1.下載ElasticSearch 6.4.1安裝包 下載地址:
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.4.1.tar.gz
2.解壓壓縮包
[root@localhost ElasticSearch]# tar -zxvf elasticsearch-6.4.1.tar.gz
3.啟動ElasticSearch
[root@localhost bin]# ./elasticsearch
以后臺方式啟動
[root@localhost bin]# ./elasticsearch -d
TIPS:
[root@localhost bin]# ./elasticsearch
[2018-09-19T19:46:09,817][WARN ][o.e.b.ElasticsearchUncaughtExceptionHandler] [] uncaught exception in thread [main]
org.elasticsearch.bootstrap.StartupException: java.lang.RuntimeException: can not run elasticsearch as root
at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:140) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:127) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:124) ~[elasticsearch-cli-6.4.1.jar:6.4.1]
at org.elasticsearch.cli.Command.main(Command.java:90) ~[elasticsearch-cli-6.4.1.jar:6.4.1]
at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:93) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:86) ~[elasticsearch-6.4.1.jar:6.4.1]
Caused by: java.lang.RuntimeException: can not run elasticsearch as root
at org.elasticsearch.bootstrap.Bootstrap.initializeNatives(Bootstrap.java:104) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.bootstrap.Bootstrap.setup(Bootstrap.java:171) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:326) ~[elasticsearch-6.4.1.jar:6.4.1]
at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:136) ~[elasticsearch-6.4.1.jar:6.4.1]
ElasticSearch 不能以root用戶角色啟動,因此需要將安裝目錄授權(quán)給其他用戶,用其他用戶來啟動
啟動成功后,驗證,打開新的終端,執(zhí)行如下命令:
[root@localhost ~]# curl 'http://localhost:9200/?pretty'
{
"name" : "O5BAVYE",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "rw1yjlzkSgODXkUVgIxmxg",
"version" : {
"number" : "6.4.1",
"build_flavor" : "default",
"build_type" : "tar",
"build_hash" : "e36acdb",
"build_date" : "2018-09-13T22:18:07.696808Z",
"build_snapshot" : false,
"lucene_version" : "7.4.0",
"minimum_wire_compatibility_version" : "5.6.0",
"minimum_index_compatibility_version" : "5.0.0"
},
"tagline" : "You Know, for Search"
}
[root@localhost ~]#
返回信息則表示安裝成功!
4.安裝Kibana
Sense 是一個 Kibana 應用 它提供交互式的控制臺,通過你的瀏覽器直接向 Elasticsearch 提交請求。 這本書的在線版本包含有一個 View in Sense 的鏈接,里面有許多代碼示例。當點擊的時候,它會打開一個代碼示例的Sense控制臺。 你不必安裝 Sense,但是它允許你在本地的 Elasticsearch 集群上測試示例代碼,從而使本書更具有交互性。
下載kibana
Kibana是一個為 ElasticSearch 提供的數(shù)據(jù)分析的 Web 接口??墒褂盟鼘θ罩具M行高效的搜索、可視化、分析等各種操作
https://artifacts.elastic.co/downloads/kibana/kibana-6.4.1-linux-x86_64.tar.gz
下載完成解壓Kibana
[root@localhost ElasticSearch]# tar -zxvf kibana-6.4.1-linux-x86_64.tar.gz
修改 配置config目錄下的kibana.yml 文件,配置elasticsearch地址和kibana地址信息
server.host: "192.168.92.50" # kibana 服務器地址
elasticsearch.url: "http://192.168.92.50:9200" # ES 地址
啟動 Kibana
[root@localhost bin]# ./kibana
安裝Kibana本機訪問:http://localhost:5601/
選擇Dev Tools菜單,即可實現(xiàn)可視化請求
5.安裝LogStash
下載logStash
https://artifacts.elastic.co/downloads/logstash/logstash-7.0.1.tar.gz
下載完成解壓后,config目錄下配置日志收集日志配置文件 logstash.conf
# Sample Logstash configuration for creating a simple
# Beats -> Logstash -> Elasticsearch pipeline.
input {
tcp {
mode => "server"
host => "192.168.92.50"
port => 4560
codec => json_lines
}
}
output {
elasticsearch {
hosts => "192.168.92.50:9200"
index => "springboot-logstash-%{+YYYY.MM.dd}"
}
}
配置成功后啟動logstatsh
[root@localhost bin]# ./logstash -f ../config/logstash.conf
ES 一些基礎(chǔ)知識:
索引(名詞):
如前所述,一個 索引 類似于傳統(tǒng)關(guān)系數(shù)據(jù)庫中的一個 數(shù)據(jù)庫 ,是一個存儲關(guān)系型文檔的地方。 索引 (index) 的復數(shù)詞為 indices 或 indexes 。
索引(動詞):
索引一個文檔 就是存儲一個文檔到一個 索引 (名詞)中以便它可以被檢索和查詢到。這非常類似于 SQL 語句中的 INSERT 關(guān)鍵詞,除了文檔已存在時新文檔會替換舊文檔情況之外。
倒排索引:
關(guān)系型數(shù)據(jù)庫通過增加一個 索引 比如一個 B樹(B-tree)索引 到指定的列上,以便提升數(shù)據(jù)檢索速度。Elasticsearch 和 Lucene 使用了一個叫做 倒排索引 的結(jié)構(gòu)來達到相同的目的。
PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
返回結(jié)果:
#! Deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
路徑 /megacorp/employee/1 包含了三部分的信息:
megacorp 索引名稱
employee 類型名稱
1 特定雇員的ID
放置第二個雇員信息:
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
返回結(jié)果:
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
放置第三個雇員信息
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
5.檢索文檔
檢索到單個雇員的數(shù)據(jù)
GET /megacorp/employee/1
返回結(jié)果:
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_version": 1,
"found": true,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
6.輕量搜索
一個 GET 是相當簡單的,可以直接得到指定的文檔。 現(xiàn)在嘗試點兒稍微高級的功能,比如一個簡單的搜索!
第一個嘗試的幾乎是最簡單的搜索了。我們使用下列請求來搜索所有雇員:
GET /megacorp/employee/_search
返回結(jié)果:
{
"took": 31,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [
"forestry"
]
}
}
]
}
}
通過姓名模糊匹配來獲得結(jié)果
GET /megacorp/employee/_search?q=last_name:Smith
返回結(jié)果:
{
"took": 414,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.2876821,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.2876821,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
]
}
}
7.使用查詢表達式搜索
領(lǐng)域特定語言 (DSL), 指定了使用一個 JSON 請求
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
返回結(jié)果:
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.2876821,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.2876821,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.2876821,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
]
}
}
8.更復雜的搜索
搜索姓氏為 Smith 的雇員,但這次我們只需要年齡大于 30 的,使用過濾器 filter ,它支持高效地執(zhí)行一個結(jié)構(gòu)化查詢
GET /megacorp/employee/_search
{
"query" : {
"bool": {
"must": {
"match" : {
"last_name" : "smith"
}
},
"filter": {
"range" : {
"age" : { "gt" : 30 }
}
}
}
}
}
其中:range 過濾器 , 它能找到年齡大于 30 的文檔,其中 gt 表示_大于(_great than)
返回結(jié)果:
{
"took": 44,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.2876821,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.2876821,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
}
9.全文搜索
搜索下所有喜歡攀巖(rock climbing)的雇員
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
返回結(jié)果:
{
"took": 17,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.5753642,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.5753642,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.2876821,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
}
10.全文搜索
找出一個屬性中的獨立單詞是沒有問題的,但有時候想要精確匹配一系列單詞或者短語 。 比如, 我們想執(zhí)行這樣一個查詢,僅匹配同時包含 “rock” 和 “climbing” ,并且 二者以短語 “rock climbing” 的形式緊挨著的雇員記錄。
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
返回結(jié)果:
{
"took": 142,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.5753642,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.5753642,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
]
}
}
11.高亮搜索
許多應用都傾向于在每個搜索結(jié)果中 高亮 部分文本片段,以便讓用戶知道為何該文檔符合查詢條件。在 Elasticsearch 中檢索出高亮片段也很容易。
增加參數(shù): highlight
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
返回結(jié)果:
{
"took": 250,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.5753642,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.5753642,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
},
"highlight": {
"about": [
"I love to go <em>rock</em> <em>climbing</em>"
]
}
}
]
}
}
其中高亮模塊為highlight屬性
12.分析
Elasticsearch 有一個功能叫聚合(aggregations),允許我們基于數(shù)據(jù)生成一些精細的分析結(jié)果。聚合與 SQL 中的 GROUP BY 類似但更強大。
舉個例子,挖掘出雇員中最受歡迎的興趣愛好:
GET /megacorp/employee/_search
{
"aggs": {
"all_interests": {
"terms": { "field": "interests" }
}
}
}
返回結(jié)果:
{
...
"hits": { ... },
"aggregations": {
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "forestry",
"doc_count": 1
},
{
"key": "sports",
"doc_count": 1
}
]
}
}
}
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。