主頁(yè) > 知識(shí)庫(kù) > pytorch如何獲得模型的計(jì)算量和參數(shù)量

pytorch如何獲得模型的計(jì)算量和參數(shù)量

熱門標(biāo)簽:佛山400電話辦理 儋州電話機(jī)器人 北瀚ai電銷機(jī)器人官網(wǎng)手機(jī)版 所得系統(tǒng)電梯怎樣主板設(shè)置外呼 地圖標(biāo)注面積 朝陽(yáng)手機(jī)外呼系統(tǒng) 市場(chǎng)上的電銷機(jī)器人 小蘇云呼電話機(jī)器人 北京電銷外呼系統(tǒng)加盟

方法1 自帶

pytorch自帶方法,計(jì)算模型參數(shù)總量

total = sum([param.nelement() for param in model.parameters()])
print("Number of parameter: %.2fM" % (total/1e6))

或者

total = sum(p.numel() for p in model.parameters())
print("Total params: %.2fM" % (total/1e6))

方法2 編寫代碼

計(jì)算模型參數(shù)總量和模型計(jì)算量

def count_params(model, input_size=224):
    # param_sum = 0
    with open('models.txt', 'w') as fm:
        fm.write(str(model))
 
    # 計(jì)算模型的計(jì)算量
    calc_flops(model, input_size)
 
    # 計(jì)算模型的參數(shù)總量
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])
 
    print('The network has {} params.'.format(params)) 
 
# 計(jì)算模型的計(jì)算量
def calc_flops(model, input_size):
 
    def conv_hook(self, input, output):
        batch_size, input_channels, input_height, input_width = input[0].size()
        output_channels, output_height, output_width = output[0].size()
 
        kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (
            2 if multiply_adds else 1)
        bias_ops = 1 if self.bias is not None else 0
 
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_height * output_width
 
        list_conv.append(flops)
 
    def linear_hook(self, input, output):
        batch_size = input[0].size(0) if input[0].dim() == 2 else 1
 
        weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
        bias_ops = self.bias.nelement()
 
        flops = batch_size * (weight_ops + bias_ops)
        list_linear.append(flops)
 
    def bn_hook(self, input, output):
        list_bn.append(input[0].nelement())
 
    def relu_hook(self, input, output):
        list_relu.append(input[0].nelement())
 
    def pooling_hook(self, input, output):
        batch_size, input_channels, input_height, input_width = input[0].size()
        output_channels, output_height, output_width = output[0].size()
 
        kernel_ops = self.kernel_size * self.kernel_size
        bias_ops = 0
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_height * output_width
 
        list_pooling.append(flops)
 
    def foo(net):
        childrens = list(net.children())
        if not childrens:
            if isinstance(net, torch.nn.Conv2d):
                net.register_forward_hook(conv_hook)
            if isinstance(net, torch.nn.Linear):
                net.register_forward_hook(linear_hook)
            if isinstance(net, torch.nn.BatchNorm2d):
                net.register_forward_hook(bn_hook)
            if isinstance(net, torch.nn.ReLU):
                net.register_forward_hook(relu_hook)
            if isinstance(net, torch.nn.MaxPool2d) or isinstance(net, torch.nn.AvgPool2d):
                net.register_forward_hook(pooling_hook)
            return
        for c in childrens:
            foo(c)
 
    multiply_adds = False
    list_conv, list_bn, list_relu, list_linear, list_pooling = [], [], [], [], []
    foo(model)
    if '0.4.' in torch.__version__:
        if assets.USE_GPU:
            input = torch.cuda.FloatTensor(torch.rand(2, 3, input_size, input_size).cuda())
        else:
            input = torch.FloatTensor(torch.rand(2, 3, input_size, input_size))
    else:
        input = Variable(torch.rand(2, 3, input_size, input_size), requires_grad=True)
    _ = model(input)
 
    total_flops = (sum(list_conv) + sum(list_linear) + sum(list_bn) + sum(list_relu) + sum(list_pooling))
 
    print('  + Number of FLOPs: %.2fM' % (total_flops / 1e6 / 2))

方法3 thop

需要安裝thop

pip install thop

調(diào)用方法:計(jì)算模型參數(shù)總量和模型計(jì)算量,而且會(huì)打印每一層網(wǎng)絡(luò)的具體信息

from thop import profile 
input = torch.randn(1, 3, 224, 224)
flops, params = profile(model, inputs=(input,))
print(flops)
print(params)

或者

from torchvision.models import resnet50
from thop import profile
 
# model = resnet50()
checkpoints = '模型path'
model = torch.load(checkpoints)
model_name = 'yolov3 cut asff'
input = torch.randn(1, 3, 224, 224)
flops, params = profile(model, inputs=(input, ),verbose=True)
print("%s | %.2f | %.2f" % (model_name, params / (1000 ** 2), flops / (1000 ** 3)))#這里除以1000的平方,是為了化成M的單位,

注意:輸入必須是四維的

提高輸出可讀性, 加入一下代碼。

from thop import clever_format
macs, params = clever_format([flops, params], "%.3f")

方法4 torchstat

from torchstat import stat
from torchvision.models import resnet50, resnet101, resnet152, resnext101_32x8d
 
model = resnet50()
stat(model, (3, 224, 224))  #  (3,224,224)表示輸入圖片的尺寸

使用torchstat這個(gè)庫(kù)來(lái)查看網(wǎng)絡(luò)模型的一些信息,包括總的參數(shù)量params、MAdd、顯卡內(nèi)存占用量和FLOPs等。需要安裝torchstat:

pip install torchstat

方法5 ptflops

作用:計(jì)算模型參數(shù)總量和模型計(jì)算量

安裝方法:pip install ptflops

或者

pip install --upgrade git+https://github.com/sovrasov/flops-counter.pytorch.git

使用方法

import torchvision.models as models
import torch
from ptflops import get_model_complexity_info
with torch.cuda.device(0):
  net = models.resnet18()
  flops, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, print_per_layer_stat=True) #不用寫batch_size大小,默認(rèn)batch_size=1
  print('Flops:  ' + flops)
  print('Params: ' + params)

或者

from torchvision.models import resnet50
import torch
import torchvision.models as models
# import torch
from ptflops import get_model_complexity_info
 
# model = models.resnet50()   #調(diào)用官方的模型,
checkpoints = '自己模型的path'
model = torch.load(checkpoints)
model_name = 'yolov3 cut'
flops, params = get_model_complexity_info(model, (3,320,320),as_strings=True,print_per_layer_stat=True)
print("%s |%s |%s" % (model_name,flops,params))

注意,這里輸入一定是要tuple類型,且不需要輸入batch,直接輸入輸入通道數(shù)量與尺寸,如(3,320,320) 320為網(wǎng)絡(luò)輸入尺寸。

輸出為網(wǎng)絡(luò)模型的總參數(shù)量(單位M,即百萬(wàn))與計(jì)算量(單位G,即十億)

方法6 torchsummary

安裝:pip install torchsummary

使用方法:

from torchsummary import summary
...
summary(your_model, input_size=(channels, H, W))

作用:

1、每一層的類型、shape 和 參數(shù)量

2、模型整體的參數(shù)量

3、模型大小,和 fp/bp 一次需要的內(nèi)存大小,可以用來(lái)估計(jì)最佳 batch_size

補(bǔ)充:pytorch計(jì)算模型算力與參數(shù)大小

ptflops介紹

官方鏈接

這個(gè)腳本設(shè)計(jì)用于計(jì)算卷積神經(jīng)網(wǎng)絡(luò)中乘法-加法操作的理論數(shù)量。它還可以計(jì)算參數(shù)的數(shù)量和打印給定網(wǎng)絡(luò)的每層計(jì)算成本。

支持layer:Conv1d/2d/3d,ConvTranspose2d,BatchNorm1d/2d/3d,激活(ReLU, PReLU, ELU, ReLU6, LeakyReLU),Linear,Upsample,Poolings (AvgPool1d/2d/3d、MaxPool1d/2d/3d、adaptive ones)

安裝要求:Pytorch >= 0.4.1, torchvision >= 0.2.1

get_model_complexity_info()

get_model_complexity_info是ptflops下的一個(gè)方法,可以計(jì)算出網(wǎng)絡(luò)的算力與模型參數(shù)大小,并且可以輸出每層的算力消耗。

栗子

以輸出Mobilenet_v2算力信息為例:

from ptflops import get_model_complexity_info
from torchvision import models
net = models.mobilenet_v2()
ops, params = get_model_complexity_info(net, (3, 224, 224), as_strings=True, 										print_per_layer_stat=True, verbose=True)

從圖中可以看到,MobileNetV2在輸入圖像尺寸為(3, 224, 224)的情況下將會(huì)產(chǎn)生3.505MB的參數(shù),算力消耗為0.32G,同時(shí)還打印出了每個(gè)層所占用的算力,權(quán)重參數(shù)數(shù)量。當(dāng)然,整個(gè)模型的算力大小與模型大小也被存到了變量ops與params中。

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • PyTorch和Keras計(jì)算模型參數(shù)的例子
  • pytorch 求網(wǎng)絡(luò)模型參數(shù)實(shí)例
  • pytorch獲取模型某一層參數(shù)名及參數(shù)值方式

標(biāo)簽:商丘 江蘇 云南 龍巖 寧夏 酒泉 定西 金融催收

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《pytorch如何獲得模型的計(jì)算量和參數(shù)量》,本文關(guān)鍵詞  pytorch,如何,獲得,模型,的,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《pytorch如何獲得模型的計(jì)算量和參數(shù)量》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于pytorch如何獲得模型的計(jì)算量和參數(shù)量的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章