主頁 > 知識(shí)庫 > MySQL之select in 子查詢優(yōu)化的實(shí)現(xiàn)

MySQL之select in 子查詢優(yōu)化的實(shí)現(xiàn)

熱門標(biāo)簽:湖南人工外呼系統(tǒng)多少錢 芒果電話機(jī)器人自動(dòng)化 日照旅游地圖標(biāo)注 南通自動(dòng)外呼系統(tǒng)軟件 申請(qǐng)外呼電話線路 信陽穩(wěn)定外呼系統(tǒng)運(yùn)營(yíng)商 石家莊電商外呼系統(tǒng) 百度地圖圖標(biāo)標(biāo)注中心 廣東人工電話機(jī)器人

下面的演示基于MySQL5.7.27版本

一、關(guān)于MySQL子查詢的優(yōu)化策略介紹:

子查詢優(yōu)化策略

對(duì)于不同類型的子查詢,優(yōu)化器會(huì)選擇不同的策略。

1. 對(duì)于 IN、=ANY 子查詢,優(yōu)化器有如下策略選擇:

  • semijoin
  • Materialization
  • exists

2. 對(duì)于 NOT IN、>ALL 子查詢,優(yōu)化器有如下策略選擇:

  • Materialization
  • exists

3. 對(duì)于 derived 派生表,優(yōu)化器有如下策略選擇:
derived_merge,將派生表合并到外部查詢中(5.7 引入 );
將派生表物化為內(nèi)部臨時(shí)表,再用于外部查詢。
注意:update 和 delete 語句中子查詢不能使用 semijoin、materialization 優(yōu)化策略

二、創(chuàng)建數(shù)據(jù)進(jìn)行模擬演示

為了方便分析問題先建兩張表并插入模擬數(shù)據(jù):

CREATE TABLE `test02` (
 `id` int(11) NOT NULL,
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `a` (`a`)
) ENGINE=InnoDB;

drop procedure idata;
delimiter ;;
create procedure idata()
begin
 declare i int;
 set i=1;
 while(i=10000)do
  insert into test02 values(i, i, i);
  set i=i+1;
 end while;
end;;
delimiter ;
call idata();

create table test01 like test02;
insert into test01 (select * from test02 where id=1000)

三、舉例分析SQL實(shí)例

子查詢示例:

SELECT * FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10)

大部分人可定會(huì)簡(jiǎn)單的認(rèn)為這個(gè) SQL 會(huì)這樣執(zhí)行:

SELECT test02.b FROM test02 WHERE id  10

結(jié)果:1,2,3,4,5,6,7,8,9

SELECT * FROM test01 WHERE test01.a IN (1,2,3,4,5,6,7,8,9);

但實(shí)際上 MySQL 并不是這樣做的。MySQL 會(huì)將相關(guān)的外層表壓到子查詢中,優(yōu)化器認(rèn)為這樣效率更高。也就是說,優(yōu)化器會(huì)將上面的 SQL 改寫成這樣:

select * from test01 where exists(select b from test02 where id  10 and test01.a=test02.b);

提示: 針對(duì)mysql5.5以及之前的版本

查看執(zhí)行計(jì)劃如下,發(fā)現(xiàn)這條SQL對(duì)表test01進(jìn)行了全表掃描1000,效率低下:

root@localhost [dbtest01]>desc select * from test01 where exists(select b from test02 where id  10 and test01.a=test02.b);
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| id | select_type    | table | partitions | type | possible_keys | key   | key_len | ref | rows  | filtered | Extra    |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| 1 | PRIMARY      | test01 | NULL    | ALL  | NULL     | NULL  | NULL  | NULL | 1000  |  100.00 | Using where |
| 2 | DEPENDENT SUBQUERY | test02 | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL |   9 |  10.00 | Using where |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

但是此時(shí)實(shí)際執(zhí)行下面的SQL,發(fā)現(xiàn)也不慢啊,這不是自相矛盾嘛,別急,咱們繼續(xù)往下分析:

SELECT * FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10)

查看此條SQL的執(zhí)行計(jì)劃如下:

root@localhost [dbtest01]>desc SELECT * FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10);
+----+--------------+-------------+------------+-------+---------------+---------+---------+---------------+------+----------+-------------+
| id | select_type | table    | partitions | type | possible_keys | key   | key_len | ref      | rows | filtered | Extra    |
+----+--------------+-------------+------------+-------+---------------+---------+---------+---------------+------+----------+-------------+
| 1 | SIMPLE    | subquery2> | NULL    | ALL  | NULL     | NULL  | NULL  | NULL     | NULL |  100.00 | Using where |
| 1 | SIMPLE    | test01   | NULL    | ref  | a       | a    | 5    | subquery2>.b |  1 |  100.00 | NULL    |
| 2 | MATERIALIZED | test02   | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL     |  9 |  100.00 | Using where |
+----+--------------+-------------+------------+-------+---------------+---------+---------+---------------+------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)

發(fā)現(xiàn)優(yōu)化器使用到了策略MATERIALIZED。于是對(duì)此策略進(jìn)行了資料查詢和學(xué)習(xí)。
https://dev.mysql.com/doc/refman/5.6/en/subquery-optimization.html

原因是從MySQL5.6版本之后包括MySQL5.6版本,優(yōu)化器引入了新的優(yōu)化策略:materialization=[off|on],semijoin=[off|on],(off代表關(guān)閉此策略,on代表開啟此策略)
可以采用show variables like 'optimizer_switch'; 來查看MySQL采用的優(yōu)化器策略。當(dāng)然這些策略都是可以在線進(jìn)行動(dòng)態(tài)修改的
set global optimizer_switch='materialization=on,semijoin=on';代表開啟優(yōu)化策略materialization和semijoin

MySQL5.7.27默認(rèn)的優(yōu)化器策略:

root@localhost [dbtest01]>show variables like 'optimizer_switch';                                                               
+------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Variable_name  | Value                                                                                                                                                                                                      |
+------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| optimizer_switch | index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,block_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstmatch=on,duplicateweedout=on,subquery_materialization_cost_based=on,use_index_extensions=on,condition_fanout_filter=on,derived_merge=on |
+------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

所以在MySQL5.6及以上版本時(shí)

執(zhí)行下面的SQL是不會(huì)慢的。因?yàn)镸ySQL的優(yōu)化器策略materialization和semijoin 對(duì)此SQL進(jìn)行了優(yōu)化

SELECT * FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10)

然而咱們把mysql的優(yōu)化器策略materialization和semijoin 關(guān)閉掉測(cè)試,發(fā)現(xiàn)SQL確實(shí)對(duì)test01進(jìn)行了全表的掃描(1000):

set global optimizer_switch='materialization=off,semijoin=off';

執(zhí)行計(jì)劃如下test01表確實(shí)進(jìn)行了全表掃描:

root@localhost [dbtest01]>desc SELECT * FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10);
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| id | select_type    | table | partitions | type | possible_keys | key   | key_len | ref | rows  | filtered | Extra    |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| 1 | PRIMARY      | test01 | NULL    | ALL  | NULL     | NULL  | NULL  | NULL | 1000  |  100.00 | Using where |
| 2 | DEPENDENT SUBQUERY | test02 | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL |   9 |  10.00 | Using where |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)

下面咱們分析下這個(gè)執(zhí)行計(jì)劃:

!?。。≡俅翁崾?如果是mysql5.5以及之前的版本,或者是mysql5.6以及之后的版本關(guān)閉掉優(yōu)化器策略materialization=off,semijoin=off,得到的SQL執(zhí)行計(jì)劃和下面的是相同的

root@localhost [dbtest01]>desc select * from test01 where exists(select b from test02 where id  10 and test01.a=test02.b);
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type    | table | partitions | type | possible_keys | key   | key_len | ref | rows | filtered | Extra    |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | PRIMARY      | test01 | NULL    | ALL  | NULL     | NULL  | NULL  | NULL | 1000 |  100.00 | Using where |
| 2 | DEPENDENT SUBQUERY | test02 | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL |  9 |  10.00 | Using where |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

不相關(guān)子查詢變成了關(guān)聯(lián)子查詢(select_type:DEPENDENT SUBQUERY),子查詢需要根據(jù) b 來關(guān)聯(lián)外表 test01,因?yàn)樾枰獗淼?test01 字段,所以子查詢是沒法先執(zhí)行的。執(zhí)行流程為:

  1. 掃描 test01,從 test01 取出一行數(shù)據(jù) R;
  2. 從數(shù)據(jù)行 R 中,取出字段 a 執(zhí)行子查詢,如果得到結(jié)果為 TRUE,則把這行數(shù)據(jù) R 放到結(jié)果集;
  3. 重復(fù) 1、2 直到結(jié)束。

總的掃描行數(shù)為 1000+1000*9=10000(這是理論值,但是實(shí)際值比10000還少,怎么來的一直沒想明白,看規(guī)律是子查詢結(jié)果集每多一行,總掃描行數(shù)就會(huì)少幾行)。

Semi-join優(yōu)化器:

這樣會(huì)有個(gè)問題,如果外層表是一個(gè)非常大的表,對(duì)于外層查詢的每一行,子查詢都得執(zhí)行一次,這個(gè)查詢的性能會(huì)非常差。我們很容易想到將其改寫成 join 來提升效率:

select test01.* from test01 join test02 on test01.a=test02.b and test02.id10;

# 查看此SQL的執(zhí)行計(jì)劃:

desc select test01.* from test01 join test02 on test01.a=test02.b and test02.id10;

root@localhost [dbtest01]>EXPLAIN extended select test01.* from test01 join test02 on test01.a=test02.b and test02.id10;
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key   | key_len | ref        | rows | filtered | Extra    |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------------+
| 1 | SIMPLE   | test02 | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL       |  9 |  100.00 | Using where |
| 1 | SIMPLE   | test01 | NULL    | ref  | a       | a    | 5    | dbtest01.test02.b |  1 |  100.00 | NULL    |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------------+
2 rows in set, 2 warnings (0.00 sec)

這樣優(yōu)化可以讓 t2 表做驅(qū)動(dòng)表,t1 表關(guān)聯(lián)字段有索引,查找效率非常高。

但這里會(huì)有個(gè)問題,join 是有可能得到重復(fù)結(jié)果的,而 in(select ...) 子查詢語義則不會(huì)得到重復(fù)值。
而 semijoin 正是解決重復(fù)值問題的一種特殊聯(lián)接。
在子查詢中,優(yōu)化器可以識(shí)別出 in 子句中每組只需要返回一個(gè)值,在這種情況下,可以使用 semijoin 來優(yōu)化子查詢,提升查詢效率。
這是 MySQL 5.6 加入的新特性,MySQL 5.6 以前優(yōu)化器只有 exists 一種策略來“優(yōu)化”子查詢。

經(jīng)過 semijoin 優(yōu)化后的 SQL 和執(zhí)行計(jì)劃分為:

root@localhost [dbtest01]>desc SELECT * FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10);
+----+--------------+-------------+------------+-------+---------------+---------+---------+---------------+------+----------+-------------+
| id | select_type | table    | partitions | type | possible_keys | key   | key_len | ref      | rows | filtered | Extra    |
+----+--------------+-------------+------------+-------+---------------+---------+---------+---------------+------+----------+-------------+
| 1 | SIMPLE    | subquery2> | NULL    | ALL  | NULL     | NULL  | NULL  | NULL     | NULL |  100.00 | Using where |
| 1 | SIMPLE    | test01   | NULL    | ref  | a       | a    | 5    | subquery2>.b |  1 |  100.00 | NULL    |
| 2 | MATERIALIZED | test02   | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL     |  9 |  100.00 | Using where |
+----+--------------+-------------+------------+-------+---------------+---------+---------+---------------+------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)
select 
  `test01`.`id`,`test01`.`a`,`test01`.`b` 
from `test01` semi join `test02` 
where
  ((`test01`.`a` = `subquery2>`.`b`) 
  and (`test02`.`id`  10)); 

##注意這是優(yōu)化器改寫的SQL,客戶端上是不能用 semi join 語法的

semijoin 優(yōu)化實(shí)現(xiàn)比較復(fù)雜,其中又分 FirstMatch、Materialize 等策略,上面的執(zhí)行計(jì)劃中 select_type=MATERIALIZED 就是代表使用了 Materialize 策略來實(shí)現(xiàn)的 semijoin
這里 semijoin 優(yōu)化后的執(zhí)行流程為:

先執(zhí)行子查詢,把結(jié)果保存到一個(gè)臨時(shí)表中,這個(gè)臨時(shí)表有個(gè)主鍵用來去重;
從臨時(shí)表中取出一行數(shù)據(jù) R;
從數(shù)據(jù)行 R 中,取出字段 b 到被驅(qū)動(dòng)表 t1 中去查找,滿足條件則放到結(jié)果集;
重復(fù)執(zhí)行 2、3,直到結(jié)束。
這樣一來,子查詢結(jié)果有 9 行,即臨時(shí)表也有 9 行(這里沒有重復(fù)值),總的掃描行數(shù)為 9+9+9*1=27 行,比原來的 10000 行少了很多。

MySQL 5.6 版本中加入的另一種優(yōu)化特性 materialization,就是把子查詢結(jié)果物化成臨時(shí)表,然后代入到外查詢中進(jìn)行查找,來加快查詢的執(zhí)行速度。內(nèi)存臨時(shí)表包含主鍵(hash 索引),消除重復(fù)行,使表更小。
如果子查詢結(jié)果太大,超過 tmp_table_size 大小,會(huì)退化成磁盤臨時(shí)表。這樣子查詢只需要執(zhí)行一次,而不是對(duì)于外層查詢的每一行都得執(zhí)行一遍。
不過要注意的是,這樣外查詢依舊無法通過索引快速查找到符合條件的數(shù)據(jù),只能通過全表掃描或者全索引掃描,

semijoin 和 materialization 的開啟是通過 optimizer_switch 參數(shù)中的 semijoin={on|off}、materialization={on|off} 標(biāo)志來控制的。
上文中不同的執(zhí)行計(jì)劃就是對(duì) semijoin 和 materialization 進(jìn)行開/關(guān)產(chǎn)生的
總的來說對(duì)于子查詢,先檢查是否滿足各種優(yōu)化策略的條件(比如子查詢中有 union 則無法使用 semijoin 優(yōu)化)
然后優(yōu)化器會(huì)按成本進(jìn)行選擇,實(shí)在沒得選就會(huì)用 exists 策略來“優(yōu)化”子查詢,exists 策略是沒有參數(shù)來開啟或者關(guān)閉的。

下面舉一個(gè)delete相關(guān)的子查詢例子:

把上面的2張測(cè)試表分別填充350萬數(shù)據(jù)和50萬數(shù)據(jù)來測(cè)試delete語句

root@localhost [dbtest01]>select count(*) from test02;
+----------+
| count(*) |
+----------+
| 3532986 |
+----------+
1 row in set (0.64 sec)
root@localhost [dbtest01]>create table test01 like test02;
Query OK, 0 rows affected (0.01 sec)

root@localhost [dbtest01]>insert into test01 (select * from test02 where id=500000)

root@localhost [dbtest01]>select count(*) from test01;
+----------+
| count(*) |
+----------+
|  500000 |

執(zhí)行delete刪除語句執(zhí)行了4s

root@localhost [dbtest01]>delete FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10);
Query OK, 9 rows affected (4.86 sec)

查看 執(zhí)行計(jì)劃,對(duì)test01表進(jìn)行了幾乎全表掃描:

root@localhost [dbtest01]>desc delete FROM test01 WHERE test01.a IN (SELECT test02.b FROM test02 WHERE id  10);
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| id | select_type    | table | partitions | type | possible_keys | key   | key_len | ref | rows  | filtered | Extra    |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
| 1 | DELETE       | test01 | NULL    | ALL  | NULL     | NULL  | NULL  | NULL | 499343 |  100.00 | Using where |
| 2 | DEPENDENT SUBQUERY | test02 | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL |   9 |  10.00 | Using where |
+----+--------------------+--------+------------+-------+---------------+---------+---------+------+--------+----------+-------------+
2 rows in set (0.00 sec)

于是修改上面的delete SQL語句偽join語句

root@localhost [dbtest01]>desc delete test01.* from test01 join test02 on test01.a=test02.b and test02.id10;
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key   | key_len | ref        | rows | filtered | Extra    |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------------+
| 1 | SIMPLE   | test02 | NULL    | range | PRIMARY    | PRIMARY | 4    | NULL       |  9 |  100.00 | Using where |
| 1 | DELETE   | test01 | NULL    | ref  | a       | a    | 5    | dbtest01.test02.b |  1 |  100.00 | NULL    |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------------+
2 rows in set (0.01 sec)

執(zhí)行非常的快
root@localhost [dbtest01]>delete test01.* from test01 join test02 on test01.a=test02.b and test02.id10;
Query OK, 9 rows affected (0.01 sec)

root@localhost [dbtest01]>select test01.* from test01 join test02 on test01.a=test02.b and test02.id10;
Empty set (0.00 sec)

下面的這個(gè)表執(zhí)行要全表掃描,非常慢,基本對(duì)表test01進(jìn)行了全表掃描:

root@lcalhost [dbtest01]>desc delete FROM test01 WHERE id IN (SELECT id FROM test02 WHERE id='350000');
+----+--------------------+--------+------------+-------+---------------+---------+---------+-------+--------+----------+-------------+
| id | select_type    | table | partitions | type | possible_keys | key   | key_len | ref  | rows  | filtered | Extra    |
+----+--------------------+--------+------------+-------+---------------+---------+---------+-------+--------+----------+-------------+
| 1 | DELETE       | test01 | NULL    | ALL  | NULL     | NULL  | NULL  | NULL | 499343 |  100.00 | Using where |
| 2 | DEPENDENT SUBQUERY | test02 | NULL    | const | PRIMARY    | PRIMARY | 4    | const |   1 |  100.00 | Using index |
+----+--------------------+--------+------------+-------+---------------+---------+---------+-------+--------+----------+-------------+
2 rows in set (0.00 sec)

然而采用join的話,效率非常的高:

root@localhost [dbtest01]>desc delete test01.* FROM test01 inner join test02 WHERE test01.id=test02.id and test02.id=350000 ;
+----+-------------+--------+------------+-------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key   | key_len | ref  | rows | filtered | Extra    |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------+------+----------+-------------+
| 1 | DELETE   | test01 | NULL    | const | PRIMARY    | PRIMARY | 4    | const |  1 |  100.00 | NULL    |
| 1 | SIMPLE   | test02 | NULL    | const | PRIMARY    | PRIMARY | 4    | const |  1 |  100.00 | Using index |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------+------+----------+-------------+
2 rows in set (0.01 sec)

 
root@localhost [dbtest01]> desc delete test01.* from test01 join test02 on test01.a=test02.b and test02.id=350000;
+----+-------------+--------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key   | key_len | ref  | rows | filtered | Extra |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| 1 | SIMPLE   | test02 | NULL    | const | PRIMARY    | PRIMARY | 4    | const |  1 |  100.00 | NULL |
| 1 | DELETE   | test01 | NULL    | ref  | a       | a    | 5    | const |  1 |  100.00 | NULL |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
2 rows in set (0.00 sec)

參考文檔:

https://www.cnblogs.com/zhengyun_ustc/p/slowquery1.html
https://www.jianshu.com/p/3989222f7084
https://dev.mysql.com/doc/refman/5.6/en/subquery-optimization.html

到此這篇關(guān)于MySQL之select in 子查詢優(yōu)化的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)MySQL select in 子查詢優(yōu)化內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • 淺談MySQL之select優(yōu)化方案
  • MySQL將select結(jié)果執(zhí)行update的實(shí)例教程
  • 解決MySQL讀寫分離導(dǎo)致insert后select不到數(shù)據(jù)的問題
  • MySQL Select語句是如何執(zhí)行的
  • mysql學(xué)習(xí)筆記之完整的select語句用法實(shí)例詳解
  • MySQL select、insert、update批量操作語句代碼實(shí)例
  • 簡(jiǎn)單了解MySQL SELECT執(zhí)行順序
  • mysql事務(wù)select for update及數(shù)據(jù)的一致性處理講解
  • MySQL中Update、select聯(lián)用操作單表、多表,及視圖與臨時(shí)表的區(qū)別
  • mysql select緩存機(jī)制使用詳解
  • MySql數(shù)據(jù)庫中Select用法小結(jié)
  • 論一條select語句在MySQL是怎樣執(zhí)行的

標(biāo)簽:沈陽 天津 阿里 合肥 牡丹江 惠州 呼和浩特 公主嶺

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《MySQL之select in 子查詢優(yōu)化的實(shí)現(xiàn)》,本文關(guān)鍵詞  MySQL,之,select,子,查詢,優(yōu)化,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《MySQL之select in 子查詢優(yōu)化的實(shí)現(xiàn)》相關(guān)的同類信息!
  • 本頁收集關(guān)于MySQL之select in 子查詢優(yōu)化的實(shí)現(xiàn)的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章