主頁(yè) > 知識(shí)庫(kù) > Spark SQL數(shù)據(jù)加載和保存實(shí)例講解

Spark SQL數(shù)據(jù)加載和保存實(shí)例講解

熱門標(biāo)簽:互聯(lián)網(wǎng)電話外呼系統(tǒng) 電話機(jī)器人怎么代理商 400電話辦理泰安 家庭農(nóng)場(chǎng)地圖標(biāo)注名稱怎樣起名 安卡拉地圖標(biāo)注app 我要地圖標(biāo)注數(shù)量有限制嗎 千呼電話機(jī)器人可以試用嗎 電銷需要外呼系統(tǒng)嗎 零成本地圖標(biāo)注賺錢

一、前置知識(shí)詳解
Spark SQL重要是操作DataFrame,DataFrame本身提供了save和load的操作,
Load:可以創(chuàng)建DataFrame,
Save:把DataFrame中的數(shù)據(jù)保存到文件或者說(shuō)與具體的格式來(lái)指明我們要讀取的文件的類型以及與具體的格式來(lái)指出我們要輸出的文件是什么類型。

二、Spark SQL讀寫數(shù)據(jù)代碼實(shí)戰(zhàn)

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import java.util.ArrayList;
import java.util.List;

public class SparkSQLLoadSaveOps {
 public static void main(String[] args) {
  SparkConf conf = new SparkConf().setMaster("local").setAppName("SparkSQLLoadSaveOps");
  JavaSparkContext sc = new JavaSparkContext(conf);
  SQLContext = new SQLContext(sc);
  /**
   * read()是DataFrameReader類型,load可以將數(shù)據(jù)讀取出來(lái)
   */
  DataFrame peopleDF = sqlContext.read().format("json").load("E:\\Spark\\Sparkinstanll_package\\Big_Data_Software\\spark-1.6.0-bin-hadoop2.6\\examples\\src\\main\\resources\\people.json");

  /**
   * 直接對(duì)DataFrame進(jìn)行操作
   * Json: 是一種自解釋的格式,讀取Json的時(shí)候怎么判斷其是什么格式?
   * 通過(guò)掃描整個(gè)Json。掃描之后才會(huì)知道元數(shù)據(jù)
   */
  //通過(guò)mode來(lái)指定輸出文件的是append。創(chuàng)建新文件來(lái)追加文件
 peopleDF.select("name").write().mode(SaveMode.Append).save("E:\\personNames");
 }
}

讀取過(guò)程源碼分析如下:
1. read方法返回DataFrameReader,用于讀取數(shù)據(jù)。

/**
 * :: Experimental ::
 * Returns a [[DataFrameReader]] that can be used to read data in as a [[DataFrame]].
 * {{{
 *  sqlContext.read.parquet("/path/to/file.parquet")
 *  sqlContext.read.schema(schema).json("/path/to/file.json")
 * }}}
 *
 * @group genericdata
 * @since 1.4.0
 */
@Experimental
//創(chuàng)建DataFrameReader實(shí)例,獲得了DataFrameReader引用
def read: DataFrameReader = new DataFrameReader(this)

2.  然后再調(diào)用DataFrameReader類中的format,指出讀取文件的格式。

/**
 * Specifies the input data source format.
 *
 * @since 1.4.0
 */
def format(source: String): DataFrameReader = {
 this.source = source
 this
}

3.  通過(guò)DtaFrameReader中l(wèi)oad方法通過(guò)路徑把傳入過(guò)來(lái)的輸入變成DataFrame。

/**
 * Loads input in as a [[DataFrame]], for data sources that require a path (e.g. data backed by
 * a local or distributed file system).
 *
 * @since 1.4.0
 */
// TODO: Remove this one in Spark 2.0.
def load(path: String): DataFrame = {
 option("path", path).load()
}

至此,數(shù)據(jù)的讀取工作就完成了,下面就對(duì)DataFrame進(jìn)行操作。
下面就是寫操作?。?!

1. 調(diào)用DataFrame中select函數(shù)進(jìn)行對(duì)列篩選

/**
 * Selects a set of columns. This is a variant of `select` that can only select
 * existing columns using column names (i.e. cannot construct expressions).
 *
 * {{{
 *  // The following two are equivalent:
 *  df.select("colA", "colB")
 *  df.select($"colA", $"colB")
 * }}}
 * @group dfops
 * @since 1.3.0
 */
@scala.annotation.varargs
def select(col: String, cols: String*): DataFrame = select((col +: cols).map(Column(_)) : _*)

2.  然后通過(guò)write將結(jié)果寫入到外部存儲(chǔ)系統(tǒng)中。

/**
 * :: Experimental ::
 * Interface for saving the content of the [[DataFrame]] out into external storage.
 *
 * @group output
 * @since 1.4.0
 */
@Experimental
def write: DataFrameWriter = new DataFrameWriter(this)

3.   在保持文件的時(shí)候mode指定追加文件的方式

/**
 * Specifies the behavior when data or table already exists. Options include:
// Overwrite是覆蓋
 *  - `SaveMode.Overwrite`: overwrite the existing data.
//創(chuàng)建新的文件,然后追加
 *  - `SaveMode.Append`: append the data.
 *  - `SaveMode.Ignore`: ignore the operation (i.e. no-op).
 *  - `SaveMode.ErrorIfExists`: default option, throw an exception at runtime.
 *
 * @since 1.4.0
 */
def mode(saveMode: SaveMode): DataFrameWriter = {
 this.mode = saveMode
 this
}

4.   最后,save()方法觸發(fā)action,將文件輸出到指定文件中。

/**
 * Saves the content of the [[DataFrame]] at the specified path.
 *
 * @since 1.4.0
 */
def save(path: String): Unit = {
 this.extraOptions += ("path" -> path)
 save()
}

三、Spark SQL讀寫整個(gè)流程圖如下

四、對(duì)于流程中部分函數(shù)源碼詳解

DataFrameReader.Load()

1. Load()返回DataFrame類型的數(shù)據(jù)集合,使用的數(shù)據(jù)是從默認(rèn)的路徑讀取。

/**
 * Returns the dataset stored at path as a DataFrame,
 * using the default data source configured by spark.sql.sources.default.
 *
 * @group genericdata
 * @deprecated As of 1.4.0, replaced by `read().load(path)`. This will be removed in Spark 2.0.
 */
@deprecated("Use read.load(path). This will be removed in Spark 2.0.", "1.4.0")
def load(path: String): DataFrame = {
//此時(shí)的read就是DataFrameReader
 read.load(path)
}

2.  追蹤load源碼進(jìn)去,源碼如下:
在DataFrameReader中的方法。Load()通過(guò)路徑把輸入傳進(jìn)來(lái)變成一個(gè)DataFrame。

/** 
 * Loads input in as a [[DataFrame]], for data sources that require a path (e.g. data backed by
 * a local or distributed file system).
 *
 * @since 1.4.0
 */
// TODO: Remove this one in Spark 2.0.
def load(path: String): DataFrame = {
 option("path", path).load()
}

3.  追蹤load源碼如下:

/**
 * Loads input in as a [[DataFrame]], for data sources that don't require a path (e.g. external
 * key-value stores).
 *
 * @since 1.4.0
 */
def load(): DataFrame = {
//對(duì)傳入的Source進(jìn)行解析
 val resolved = ResolvedDataSource(
  sqlContext,
  userSpecifiedSchema = userSpecifiedSchema,
  partitionColumns = Array.empty[String],
  provider = source,
  options = extraOptions.toMap)
 DataFrame(sqlContext, LogicalRelation(resolved.relation))
}

DataFrameReader.format()

1. Format:具體指定文件格式,這就獲得一個(gè)巨大的啟示是:如果是Json文件格式可以保持為Parquet等此類操作。
Spark SQL在讀取文件的時(shí)候可以指定讀取文件的類型。例如,Json,Parquet.

/**
 * Specifies the input data source format.Built-in options include “parquet”,”json”,etc.
 *
 * @since 1.4.0
 */
def format(source: String): DataFrameReader = {
 this.source = source //FileType
 this
}

DataFrame.write()

1. 創(chuàng)建DataFrameWriter實(shí)例

/**
 * :: Experimental ::
 * Interface for saving the content of the [[DataFrame]] out into external storage.
 *
 * @group output
 * @since 1.4.0
 */
@Experimental
def write: DataFrameWriter = new DataFrameWriter(this)
1

2.  追蹤DataFrameWriter源碼如下:
以DataFrame的方式向外部存儲(chǔ)系統(tǒng)中寫入數(shù)據(jù)。

/**
 * :: Experimental ::
 * Interface used to write a [[DataFrame]] to external storage systems (e.g. file systems,
 * key-value stores, etc). Use [[DataFrame.write]] to access this.
 *
 * @since 1.4.0
 */
@Experimental
final class DataFrameWriter private[sql](df: DataFrame) {

DataFrameWriter.mode()

1. Overwrite是覆蓋,之前寫的數(shù)據(jù)全都被覆蓋了。
Append:是追加,對(duì)于普通文件是在一個(gè)文件中進(jìn)行追加,但是對(duì)于parquet格式的文件則創(chuàng)建新的文件進(jìn)行追加。

/**
 * Specifies the behavior when data or table already exists. Options include:
 *  - `SaveMode.Overwrite`: overwrite the existing data.
 *  - `SaveMode.Append`: append the data.
 *  - `SaveMode.Ignore`: ignore the operation (i.e. no-op).
//默認(rèn)操作
 *  - `SaveMode.ErrorIfExists`: default option, throw an exception at runtime.
 *
 * @since 1.4.0
 */
def mode(saveMode: SaveMode): DataFrameWriter = {
 this.mode = saveMode
 this
}

2.  通過(guò)模式匹配接收外部參數(shù)

/**
 * Specifies the behavior when data or table already exists. Options include:
 *  - `overwrite`: overwrite the existing data.
 *  - `append`: append the data.
 *  - `ignore`: ignore the operation (i.e. no-op).
 *  - `error`: default option, throw an exception at runtime.
 *
 * @since 1.4.0
 */
def mode(saveMode: String): DataFrameWriter = {
 this.mode = saveMode.toLowerCase match {
  case "overwrite" => SaveMode.Overwrite
  case "append" => SaveMode.Append
  case "ignore" => SaveMode.Ignore
  case "error" | "default" => SaveMode.ErrorIfExists
  case _ => throw new IllegalArgumentException(s"Unknown save mode: $saveMode. " +
   "Accepted modes are 'overwrite', 'append', 'ignore', 'error'.")
 }
 this
}

DataFrameWriter.save()

1. save將結(jié)果保存?zhèn)魅氲穆窂健?/p>

/**
 * Saves the content of the [[DataFrame]] at the specified path.
 *
 * @since 1.4.0
 */
def save(path: String): Unit = {
 this.extraOptions += ("path" -> path)
 save()
}

2.  追蹤save方法。

/**
 * Saves the content of the [[DataFrame]] as the specified table.
 *
 * @since 1.4.0
 */
def save(): Unit = {
 ResolvedDataSource(
  df.sqlContext,
  source,
  partitioningColumns.map(_.toArray).getOrElse(Array.empty[String]),
  mode,
  extraOptions.toMap,
  df)
}

3.  其中source是SQLConf的defaultDataSourceName
private var source: String = df.sqlContext.conf.defaultDataSourceName
其中DEFAULT_DATA_SOURCE_NAME默認(rèn)參數(shù)是parquet。

// This is used to set the default data source
val DEFAULT_DATA_SOURCE_NAME = stringConf("spark.sql.sources.default",
 defaultValue = Some("org.apache.spark.sql.parquet"),
 doc = "The default data source to use in input/output.")

DataFrame.scala中部分函數(shù)詳解:

1. toDF函數(shù)是將RDD轉(zhuǎn)換成DataFrame

/**
 * Returns the object itself.
 * @group basic
 * @since 1.3.0
 */
// This is declared with parentheses to prevent the Scala compiler from treating
// `rdd.toDF("1")` as invoking this toDF and then apply on the returned DataFrame.
def toDF(): DataFrame = this

2.  show()方法:將結(jié)果顯示出來(lái)

/**
 * Displays the [[DataFrame]] in a tabular form. For example:
 * {{{
 *  year month AVG('Adj Close) MAX('Adj Close)
 *  1980 12  0.503218    0.595103
 *  1981 01  0.523289    0.570307
 *  1982 02  0.436504    0.475256
 *  1983 03  0.410516    0.442194
 *  1984 04  0.450090    0.483521
 * }}}
 * @param numRows Number of rows to show
 * @param truncate Whether truncate long strings. If true, strings more than 20 characters will
 *       be truncated and all cells will be aligned right
 *
 * @group action
 * @since 1.5.0
 */
// scalastyle:off println
def show(numRows: Int, truncate: Boolean): Unit = println(showString(numRows, truncate))
// scalastyle:on println

追蹤showString源碼如下:showString中觸發(fā)action收集數(shù)據(jù)。

/**
 * Compose the string representing rows for output
 * @param _numRows Number of rows to show
 * @param truncate Whether truncate long strings and align cells right
 */
private[sql] def showString(_numRows: Int, truncate: Boolean = true): String = {
 val numRows = _numRows.max(0)
 val sb = new StringBuilder
 val takeResult = take(numRows + 1)
 val hasMoreData = takeResult.length > numRows
 val data = takeResult.take(numRows)
 val numCols = schema.fieldNames.length

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • Spark SQL常見(jiàn)4種數(shù)據(jù)源詳解
  • Spark學(xué)習(xí)筆記之Spark SQL的具體使用
  • pyspark.sql.DataFrame與pandas.DataFrame之間的相互轉(zhuǎn)換實(shí)例
  • 淺談DataFrame和SparkSql取值誤區(qū)
  • Spark SQL操作JSON字段的小技巧
  • Spark SQL的整體實(shí)現(xiàn)邏輯解析

標(biāo)簽:池州 黃山 來(lái)賓 文山 大同 東營(yíng) 新鄉(xiāng) 濱州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Spark SQL數(shù)據(jù)加載和保存實(shí)例講解》,本文關(guān)鍵詞  Spark,SQL,數(shù)據(jù),加載,和,保存,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Spark SQL數(shù)據(jù)加載和保存實(shí)例講解》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于Spark SQL數(shù)據(jù)加載和保存實(shí)例講解的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章