前言
軟件開(kāi)發(fā)過(guò)程中,項(xiàng)目上線并不是終點(diǎn)。上線后,還要對(duì)程序的取樣分析運(yùn)行情況,并重構(gòu)現(xiàn)有的功能,讓程序執(zhí)行更高效更穩(wěn)寫(xiě)。 golang的工具包內(nèi)自帶pprof功能,使找出程序中占內(nèi)存和CPU較多的部分功能方便了不少。加上uber的火焰圖,可視化顯示,讓我們?cè)诜治龀绦驎r(shí)更簡(jiǎn)單明了。
pprof有兩個(gè)包用來(lái)分析程序一個(gè)是net/http/pprof另一個(gè)是runtime/pprof,net/http/pprof只是對(duì)runtime/pprof包進(jìn)行封裝并用http暴露出來(lái),如下圖源碼所示:
使用net/http/pprof分析web服務(wù)
pprof分析web項(xiàng)目,非常的簡(jiǎn)單只需要導(dǎo)入包即可。
編寫(xiě)一個(gè)小的web服務(wù)器
package main
import (
_ "net/http/pprof"
"net/http"
"time"
"math/rand"
"fmt"
)
var Count int64 = 0
func main() {
go calCount()
http.HandleFunc("/test", test)
http.HandleFunc("/data", handlerData)
err := http.ListenAndServe(":9909", nil )
if err != nil {
panic(err)
}
}
func handlerData(w http.ResponseWriter, r *http.Request) {
qUrl := r.URL
fmt.Println(qUrl)
fibRev := Fib()
var fib uint64
for i:= 0; i 5000; i++ {
fib = fibRev()
fmt.Println("fib = ", fib)
}
str := RandomStr(RandomInt(100, 500))
str = fmt.Sprintf("Fib = %d; String = %s", fib, str)
w.Write([]byte(str))
}
func test(w http.ResponseWriter, r *http.Request) {
fibRev := Fib()
var fib uint64
index := Count
arr := make([]uint64, index)
var i int64
for ; i index; i++ {
fib = fibRev()
arr[i] = fib
fmt.Println("fib = ", fib)
}
time.Sleep(time.Millisecond * 500)
str := fmt.Sprintf("Fib = %v", arr)
w.Write([]byte(str))
}
func Fib() func() uint64 {
var x, y uint64 = 0, 1
return func() uint64 {
x, y = y, x + y
return x
}
}
var letterRunes = []rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890")
func RandomStr(num int) string {
seed := time.Now().UnixNano()
if seed = 0 {
seed = time.Now().UnixNano()
}
rand.Seed(seed)
b := make([]rune, num)
for i := range b {
b[i] = letterRunes[rand.Intn(len(letterRunes))]
}
return string(b)
}
func RandomInt(min, max int) int {
rand.Seed(time.Now().UnixNano())
return rand.Intn(max - min + 1) + min
}
func calCount() {
timeInterval := time.Tick(time.Second)
for {
select {
case i := - timeInterval:
Count = int64(i.Second())
}
}
}
web服務(wù)監(jiān)聽(tīng)9909端口
web服務(wù)器有兩個(gè)http方法
test: 根據(jù)當(dāng)前的秒數(shù)做斐波那契計(jì)算
data: 做一個(gè)5000的斐波那契計(jì)算并返回一個(gè)隨機(jī)的字符串
運(yùn)行程序,通過(guò)訪問(wèn) http://192.168.3.34:9909/debug/pprof/可以查看web版的profiles相關(guān)信息
這幾個(gè)路徑表示的是
/debug/pprof/profile:訪問(wèn)這個(gè)鏈接會(huì)自動(dòng)進(jìn)行 CPU profiling,持續(xù) 30s,并生成一個(gè)文件供下載
/debug/pprof/block:Goroutine阻塞事件的記錄。默認(rèn)每發(fā)生一次阻塞事件時(shí)取樣一次。
/debug/pprof/goroutines:活躍Goroutine的信息的記錄。僅在獲取時(shí)取樣一次。
/debug/pprof/heap: 堆內(nèi)存分配情況的記錄。默認(rèn)每分配512K字節(jié)時(shí)取樣一次。
/debug/pprof/mutex: 查看爭(zhēng)用互斥鎖的持有者。
/debug/pprof/threadcreate: 系統(tǒng)線程創(chuàng)建情況的記錄。 僅在獲取時(shí)取樣一次。
除了這些golang為我提供了更多方便的方法,用于分析,下面我們來(lái)用命令去訪問(wèn)詳細(xì)的信息
我們用wrk來(lái)訪問(wèn)我們的兩個(gè)方法,這樣我們的服務(wù)會(huì)處在高速運(yùn)行狀態(tài),取樣的結(jié)果會(huì)更準(zhǔn)確
wrk -c 20 -t 5 -d 3m http://192.168.3.34:9909/data
wrk -c 20 -t 5 -d 3m http://192.168.3.34:9909/test
分析CPU使用情況
使用命令分析CPU使用情況
go tool pprof httpdemo http://192.168.3.34:9909/debug/pprof/profile
在默認(rèn)情況下,Go語(yǔ)言的運(yùn)行時(shí)系統(tǒng)會(huì)以100 Hz的的頻率對(duì)CPU使用情況進(jìn)行取樣。也就是說(shuō)每秒取樣100次,即每10毫秒會(huì)取樣一次。為什么使用這個(gè)頻率呢?因?yàn)?00 Hz既足夠產(chǎn)生有用的數(shù)據(jù),又不至于讓系統(tǒng)產(chǎn)生停頓。并且100這個(gè)數(shù)上也很容易做換算,比如把總?cè)佑?jì)數(shù)換算為每秒的取樣數(shù)。實(shí)際上,這里所說(shuō)的對(duì)CPU使用情況的取樣就是對(duì)當(dāng)前的Goroutine的堆棧上的程序計(jì)數(shù)器的取樣。
默認(rèn)的取樣時(shí)間是30s 你可以通過(guò)-seconds 命令來(lái)指定取樣時(shí)間 。取樣完成后會(huì)進(jìn)入命令行狀態(tài):
可以輸入help查看相關(guān)的命令.這里說(shuō)幾個(gè)常用的命令
top命令,輸入top命令默認(rèn)是返加前10的占用cpu的方法。當(dāng)然人可以在命令后面加數(shù)字指定top數(shù)
list命令根據(jù)你的正則輸出相關(guān)的方法.直接跟可選項(xiàng)o 會(huì)輸出所有的方法。也可以指定方法名
如: handlerData方法占cpu的74.81%
web命令:以網(wǎng)頁(yè)的形式展現(xiàn):更直觀的顯示cpu的使用情況
分析內(nèi)存使用情況
和分析cpu差不多使用命令
go tool pprof httpdemo http://192.168.3.34:9909/debug/pprof/heap
默認(rèn)情況下取樣時(shí)只取當(dāng)前內(nèi)存使用情況,可以加可選命令alloc_objects,將從程序開(kāi)始時(shí)的內(nèi)存取樣
go tool pprof -alloc_objects httpdemo http://192.168.3.34:9909/debug/pprof/heap
和cpu的命令一樣,top list web。不同的是這里顯示的是內(nèi)存使用情況而已。這里我就不演示了。
安裝go-torch
還有更方便的工具就是uber的go-torch了
安裝很簡(jiǎn)單
go get github.com/uber/go-torch
cd $GOPATH/src/github.com/uber/go-torch
git clone https://github.com/brendangregg/FlameGraph.git
然后運(yùn)行FlameGraph下的 拷貝flamegraph.pl 到 /usr/local/bin
火焰圖分析CPU
使用命令
go-torch -u http://192.168.3.34:9909 --seconds 60 -f cpu.svg
會(huì)在當(dāng)前目錄下生成cpu.svg文件,使用瀏覽器打開(kāi)
更直觀的看到應(yīng)用程序的問(wèn)題。handlerData方法占用的cpu時(shí)間過(guò)長(zhǎng)。然后就是去代碼里分析并優(yōu)化了。
火焰圖分析內(nèi)存
使用命令
go-torch http://192.168.3.34:9909/debug/pprof/heap --colors mem -f mem.svg
會(huì)在當(dāng)前目錄下生成cpu.svg文件,使用瀏覽器打開(kāi)
使用runtime/pprof分析項(xiàng)目
如果你的項(xiàng)目不是web服務(wù),比如是rpc服務(wù)等,就要使用runtime/pprof。他提供了很多方法,有時(shí)間可以看一下源碼
我寫(xiě)了一個(gè)簡(jiǎn)單的工具類。用于調(diào)用分析
package profapp
import (
"os"
"rrnc_im/lib/zaplogger"
"go.uber.org/zap"
"runtime/pprof"
"runtime"
)
func StartCpuProf() {
f, err := os.Create("cpu.prof")
if err != nil {
zaplogger.Error("create cpu profile file error: ", zap.Error(err))
return
}
if err := pprof.StartCPUProfile(f); err != nil {
zaplogger.Error("can not start cpu profile, error: ", zap.Error(err))
f.Close()
}
}
func StopCpuProf() {
pprof.StopCPUProfile()
}
//--------Mem
func ProfGc() {
runtime.GC() // get up-to-date statistics
}
func SaveMemProf() {
f, err := os.Create("mem.prof")
if err != nil {
zaplogger.Error("create mem profile file error: ", zap.Error(err))
return
}
if err := pprof.WriteHeapProfile(f); err != nil {
zaplogger.Error("could not write memory profile: ", zap.Error(err))
}
f.Close()
}
// goroutine block
func SaveBlockProfile() {
f, err := os.Create("block.prof")
if err != nil {
zaplogger.Error("create mem profile file error: ", zap.Error(err))
return
}
if err := pprof.Lookup("block").WriteTo(f, 0); err != nil {
zaplogger.Error("could not write block profile: ", zap.Error(err))
}
f.Close()
}
在需要分析的方法內(nèi)調(diào)用這些方法就可以 比如我是用rpc開(kāi)放了幾個(gè)方法
type TestProf struct {
}
func (*TestProf) StartCpuProAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
profapp.StartCpuProf()
return nil
}
func (*TestProf) StopCpuProfAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
profapp.StopCpuProf()
return nil
}
func (*TestProf) ProfGcAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
profapp.ProfGc()
return nil
}
func (*TestProf) SaveMemAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
profapp.SaveMemProf()
return nil
}
func (*TestProf) SaveBlockProfileAct(context.Context, *im_test.TestRequest, *im_test.TestRequest) error {
profapp.SaveBlockProfile()
return nil
}
調(diào)用
profTest.StartCpuProAct(context.TODO(), im_test.TestRequest{})
time.Sleep(time.Second * 30)
profTest.StopCpuProfAct(context.TODO(), im_test.TestRequest{})
profTest.SaveMemAct(context.TODO(), im_test.TestRequest{})
profTest.SaveBlockProfileAct(context.TODO(), im_test.TestRequest{})
思想是一樣的,會(huì)在當(dāng)前文件夾內(nèi)導(dǎo)出profile文件。然后用火焰圖去分析,就不能指定域名了,要指定文件
go-torch httpdemo cpu.prof
go-torch httpdemo mem.prof
總結(jié)
以上就是這篇文章的全部?jī)?nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,如果有疑問(wèn)大家可以留言交流,謝謝大家對(duì)腳本之家的支持。
您可能感興趣的文章:- Go程序性能優(yōu)化及pprof使用方法詳解
- 深入理解Golang的單元測(cè)試和性能測(cè)試