主頁(yè) > 知識(shí)庫(kù) > python中K-means算法基礎(chǔ)知識(shí)點(diǎn)

python中K-means算法基礎(chǔ)知識(shí)點(diǎn)

熱門(mén)標(biāo)簽:惠州龍門(mén)400電話要怎么申請(qǐng) 熱門(mén)電銷機(jī)器人 萬(wàn)利達(dá)百貨商場(chǎng)地圖標(biāo)注 上海企業(yè)外呼系統(tǒng) okcc外呼系統(tǒng)怎么調(diào)速度 河南虛擬外呼系統(tǒng)公司 智能機(jī)器人電銷神器 電話機(jī)器人哪里有賣(mài) 外呼電信系統(tǒng)

能夠?qū)W習(xí)和掌握編程,最好的學(xué)習(xí)方式,就是去掌握基本的使用技巧,再多的概念意義,總歸都是為了使用服務(wù)的,K-means算法又叫K-均值算法,是非監(jiān)督學(xué)習(xí)中的聚類算法。主要有三個(gè)元素,其中N是元素個(gè)數(shù),x表示元素,c(j)表示第j簇的質(zhì)心,下面就使用方式給大家簡(jiǎn)單介紹實(shí)例使用。

K-Means算法進(jìn)行聚類分析

km = KMeans(n_clusters = 3)
km.fit(X)
centers = km.cluster_centers_
print(centers)

三個(gè)簇的中心點(diǎn)坐標(biāo)為:

[[5.006 3.428 ]

[6.81276596 3.07446809]

[5.77358491 2.69245283]]

比較一下K-Means聚類結(jié)果和實(shí)際樣本之間的差別:

predicted_labels = km.labels_
fig, axes = plt.subplots(1, 2, figsize=(16,8))
axes[0].scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, 
        edgecolor='k', s=150)
axes[1].scatter(X[:, 0], X[:, 1], c=predicted_labels, cmap=plt.cm.Set1,
        edgecolor='k', s=150)
axes[0].set_xlabel('Sepal length', fontsize=16)
axes[0].set_ylabel('Sepal width', fontsize=16)
axes[1].set_xlabel('Sepal length', fontsize=16)
axes[1].set_ylabel('Sepal width', fontsize=16)
axes[0].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20)
axes[1].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20)
axes[0].set_title('Actual', fontsize=18)
axes[1].set_title('Predicted', fontsize=18)

k-means算法實(shí)例擴(kuò)展內(nèi)容:

# -*- coding: utf-8 -*- 
"""Excercise 9.4"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
import random

data = pd.read_csv(filepath_or_buffer = '../dataset/watermelon4.0.csv', sep = ',')[["密度","含糖率"]].values

########################################## K-means ####################################### 
k = int(sys.argv[1])
#Randomly choose k samples from data as mean vectors
mean_vectors = random.sample(data,k)

def dist(p1,p2):
 return np.sqrt(sum((p1-p2)*(p1-p2)))
while True:
 print mean_vectors
 clusters = map ((lambda x:[x]), mean_vectors) 
 for sample in data:
  distances = map((lambda m: dist(sample,m)), mean_vectors) 
  min_index = distances.index(min(distances))
  clusters[min_index].append(sample)
 new_mean_vectors = []
 for c,v in zip(clusters,mean_vectors):
  new_mean_vector = sum(c)/len(c)
  #If the difference betweenthe new mean vector and the old mean vector is less than 0.0001
  #then do not updata the mean vector
  if all(np.divide((new_mean_vector-v),v)  np.array([0.0001,0.0001]) ):
   new_mean_vectors.append(v) 
  else:
   new_mean_vectors.append(new_mean_vector) 
 if np.array_equal(mean_vectors,new_mean_vectors):
  break
 else:
  mean_vectors = new_mean_vectors 

#Show the clustering result
total_colors = ['r','y','g','b','c','m','k']
colors = random.sample(total_colors,k)
for cluster,color in zip(clusters,colors):
 density = map(lambda arr:arr[0],cluster)
 sugar_content = map(lambda arr:arr[1],cluster)
 plt.scatter(density,sugar_content,c = color)
plt.show()

到此這篇關(guān)于python中K-means算法基礎(chǔ)知識(shí)點(diǎn)的文章就介紹到這了,更多相關(guān)python中K-means算法是什么內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python實(shí)現(xiàn)線性回歸算法
  • Python實(shí)現(xiàn)七大查找算法的示例代碼
  • Python查找算法之折半查找算法的實(shí)現(xiàn)
  • Python查找算法之插補(bǔ)查找算法的實(shí)現(xiàn)
  • python高效的素?cái)?shù)判斷算法
  • python實(shí)現(xiàn)ROA算子邊緣檢測(cè)算法
  • Python實(shí)現(xiàn)粒子群算法的示例
  • Python實(shí)現(xiàn)隨機(jī)爬山算法
  • python 圖像增強(qiáng)算法實(shí)現(xiàn)詳解
  • python入門(mén)之算法學(xué)習(xí)

標(biāo)簽:周口 秦皇島 淮安 百色 綿陽(yáng) 綏化 合肥 周口

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《python中K-means算法基礎(chǔ)知識(shí)點(diǎn)》,本文關(guān)鍵詞  python,中,K-means,算法,基礎(chǔ),;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《python中K-means算法基礎(chǔ)知識(shí)點(diǎn)》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于python中K-means算法基礎(chǔ)知識(shí)點(diǎn)的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章