Keras 是一個(gè)用于構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型的高階 API。它可用于快速設(shè)計(jì)原型、高級(jí)研究和生產(chǎn)。 keras的3個(gè)優(yōu)點(diǎn):
方便用戶使用、模塊化和可組合、易于擴(kuò)展
tensorflow2推薦使用keras構(gòu)建網(wǎng)絡(luò),常見的神經(jīng)網(wǎng)絡(luò)都包含在keras.layer中(最新的tf.keras的版本可能和keras不同)
import tensorflow as tf from tensorflow.keras import layers print(tf.__version__) print(tf.keras.__version__)
最常見的模型類型是層的堆疊:tf.keras.Sequential 模型
model = tf.keras.Sequential() model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(10, activation='softmax'))
tf.keras.layers中網(wǎng)絡(luò)配置:
activation:設(shè)置層的激活函數(shù)。此參數(shù)由內(nèi)置函數(shù)的名稱指定,或指定為可調(diào)用對(duì)象。默認(rèn)情況下,系統(tǒng)不會(huì)應(yīng)用任何激活函數(shù)。
kernel_initializer 和 bias_initializer:創(chuàng)建層權(quán)重(核和偏差)的初始化方案。此參數(shù)是一個(gè)名稱或可調(diào)用對(duì)象,默認(rèn)為 “Glorot uniform” 初始化器。
kernel_regularizer 和 bias_regularizer:應(yīng)用層權(quán)重(核和偏差)的正則化方案,例如 L1 或 L2 正則化。默認(rèn)情況下,系統(tǒng)不會(huì)應(yīng)用正則化函數(shù)。
layers.Dense(32, activation='sigmoid') layers.Dense(32, activation=tf.sigmoid) layers.Dense(32, kernel_initializer='orthogonal') layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal) layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01)) layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))
構(gòu)建好模型后,通過調(diào)用 compile 方法配置該模型的學(xué)習(xí)流程:
model = tf.keras.Sequential() model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.categorical_crossentropy, metrics=[tf.keras.metrics.categorical_accuracy])
import numpy as np train_x = np.random.random((1000, 72)) train_y = np.random.random((1000, 10)) val_x = np.random.random((200, 72)) val_y = np.random.random((200, 10)) model.fit(train_x, train_y, epochs=10, batch_size=100, validation_data=(val_x, val_y))
dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y)) dataset = dataset.batch(32) dataset = dataset.repeat() val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y)) val_dataset = val_dataset.batch(32) val_dataset = val_dataset.repeat() model.fit(dataset, epochs=10, steps_per_epoch=30, validation_data=val_dataset, validation_steps=3)
test_x = np.random.random((1000, 72)) test_y = np.random.random((1000, 10)) model.evaluate(test_x, test_y, batch_size=32) test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y)) test_data = test_data.batch(32).repeat() model.evaluate(test_data, steps=30)
# predict result = model.predict(test_x, batch_size=32) print(result)
tf.keras.Sequential 模型是層的簡(jiǎn)單堆疊,無法表示任意模型。使用 Keras 函數(shù)式 API 可以構(gòu)建復(fù)雜的模型拓?fù)?,例如?/p>
多輸入模型,
多輸出模型,
具有共享層的模型(同一層被調(diào)用多次),
具有非序列數(shù)據(jù)流的模型(例如,殘差連接)。
使用函數(shù)式 API 構(gòu)建的模型具有以下特征:
層實(shí)例可調(diào)用并返回張量。
輸入張量和輸出張量用于定義 tf.keras.Model 實(shí)例。
此模型的訓(xùn)練方式和 Sequential 模型一樣。
input_x = tf.keras.Input(shape=(72,)) hidden1 = layers.Dense(32, activation='relu')(input_x) hidden2 = layers.Dense(16, activation='relu')(hidden1) pred = layers.Dense(10, activation='softmax')(hidden2) model = tf.keras.Model(inputs=input_x, outputs=pred) model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.categorical_crossentropy, metrics=['accuracy']) model.fit(train_x, train_y, batch_size=32, epochs=5)
通過對(duì) tf.keras.Model 進(jìn)行子類化并定義您自己的前向傳播來構(gòu)建完全可自定義的模型。在 init 方法中創(chuàng)建層并將它們?cè)O(shè)置為類實(shí)例的屬性。在 call 方法中定義前向傳播
class MyModel(tf.keras.Model): def __init__(self, num_classes=10): super(MyModel, self).__init__(name='my_model') self.num_classes = num_classes self.layer1 = layers.Dense(32, activation='relu') self.layer2 = layers.Dense(num_classes, activation='softmax') def call(self, inputs): h1 = self.layer1(inputs) out = self.layer2(h1) return out def compute_output_shape(self, input_shape): shape = tf.TensorShapej(input_shape).as_list() shape[-1] = self.num_classes return tf.TensorShape(shape) model = MyModel(num_classes=10) model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001), loss=tf.keras.losses.categorical_crossentropy, metrics=['accuracy']) model.fit(train_x, train_y, batch_size=16, epochs=5)
通過對(duì) tf.keras.layers.Layer 進(jìn)行子類化并實(shí)現(xiàn)以下方法來創(chuàng)建自定義層:
build:創(chuàng)建層的權(quán)重。使用 add_weight 方法添加權(quán)重。
call:定義前向傳播。
compute_output_shape:指定在給定輸入形狀的情況下如何計(jì)算層的輸出形狀。
或者,可以通過實(shí)現(xiàn) get_config 方法和 from_config 類方法序列化層。
class MyLayer(layers.Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): shape = tf.TensorShape((input_shape[1], self.output_dim)) self.kernel = self.add_weight(name='kernel1', shape=shape, initializer='uniform', trainable=True) super(MyLayer, self).build(input_shape) def call(self, inputs): return tf.matmul(inputs, self.kernel) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.output_dim return tf.TensorShape(shape) def get_config(self): base_config = super(MyLayer, self).get_config() base_config['output_dim'] = self.output_dim return base_config @classmethod def from_config(cls, config): return cls(**config) model = tf.keras.Sequential( [ MyLayer(10), layers.Activation('softmax') ]) model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001), loss=tf.keras.losses.categorical_crossentropy, metrics=['accuracy']) model.fit(train_x, train_y, batch_size=16, epochs=5)
callbacks = [ tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'), tf.keras.callbacks.TensorBoard(log_dir='./logs') ] model.fit(train_x, train_y, batch_size=16, epochs=5, callbacks=callbacks, validation_data=(val_x, val_y))
model = tf.keras.Sequential([ layers.Dense(64, activation='relu'), layers.Dense(10, activation='softmax')]) model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss='categorical_crossentropy', metrics=['accuracy']) model.save_weights('./weights/model') model.load_weights('./weights/model') model.save_weights('./model.h5') model.load_weights('./model.h5')
# 序列化成json import json import pprint json_str = model.to_json() pprint.pprint(json.loads(json_str)) fresh_model = tf.keras.models.model_from_json(json_str) # 保持為yaml格式 #需要提前安裝pyyaml yaml_str = model.to_yaml() print(yaml_str) fresh_model = tf.keras.models.model_from_yaml(yaml_str)
model = tf.keras.Sequential([ layers.Dense(10, activation='softmax', input_shape=(72,)), layers.Dense(10, activation='softmax') ]) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(train_x, train_y, batch_size=32, epochs=5) model.save('all_model.h5') model = tf.keras.models.load_model('all_model.h5')
Estimator API 用于針對(duì)分布式環(huán)境訓(xùn)練模型。它適用于一些行業(yè)使用場(chǎng)景,例如用大型數(shù)據(jù)集進(jìn)行分布式訓(xùn)練并導(dǎo)出模型以用于生產(chǎn)
model = tf.keras.Sequential([layers.Dense(10,activation='softmax'), layers.Dense(10,activation='softmax')]) model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001), loss='categorical_crossentropy', metrics=['accuracy']) estimator = tf.keras.estimator.model_to_estimator(model)
到此這篇關(guān)于tensorflow2.0教程之Keras快速入門的文章就介紹到這了,更多相關(guān)Keras快速入門內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
標(biāo)簽:合肥 平頂山 郴州 烏蘭察布 哈爾濱 烏蘭察布 大慶 海南
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《tensorflow2.0教程之Keras快速入門》,本文關(guān)鍵詞 tensorflow2.0,教程,之,Keras,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。