reshape函數(shù):改變數(shù)組的維數(shù)(注意不是shape大?。?/p>
>>> e= np.arange(10)
>>> e
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> e.reshape(1,1,10)
array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]])
>>> e.reshape(1,1,10)
array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]])
>>> e.reshape(1,10,1)
array([[[0],
[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8],
[9]]])
squeeze 函數(shù):從數(shù)組的形狀中刪除單維度條目,即把shape中為1的維度去掉
用法:numpy.squeeze(a,axis = None)
1)a表示輸入的數(shù)組;
2)axis用于指定需要?jiǎng)h除的維度,但是指定的維度必須為單維度,否則將會(huì)報(bào)錯(cuò);
3)axis的取值可為None 或 int 或 tuple of ints, 可選。若axis為空,則刪除所有單維度的條目;
4)返回值:數(shù)組
5) 不會(huì)修改原數(shù)組;
>>> a = e.reshape(1,1,10)
>>> a
array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]])
>>> np.squeeze(a)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
體現(xiàn)在畫(huà)圖時(shí)
>>> plt.plot(a)
Traceback (most recent call last):
File "stdin>", line 1, in module>
File "C:\Python27\lib\site-packages\matplotlib\pyplot.py", line 3240, in plot
ret = ax.plot(*args, **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\__init__.py", line 1710, in inner
return func(ax, *args, **kwargs)
File "C:\Python27\lib\site-packages\matplotlib\axes\_axes.py", line 1437, in plot
for line in self._get_lines(*args, **kwargs):
File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 404, in _grab_next_args
for seg in self._plot_args(this, kwargs):
File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 384, in _plot_args
x, y = self._xy_from_xy(x, y)
File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 246, in _xy_from_xy
"shapes {} and {}".format(x.shape, y.shape))
ValueError: x and y can be no greater than 2-D, but have shapes (1L,) and (1L, 1L, 10L)
>>> plt.plot(np.squeeze(a))
[matplotlib.lines.Line2D object at 0x00000000146CD940>]
>>> plt.show()
>>> np.squeeze(a).shape
(10L,)
通過(guò)np.squeeze()函數(shù)轉(zhuǎn)換后,要顯示的數(shù)組變成了秩為1的數(shù)組,即(10,)
參考:http://blog.csdn.net/zenghaitao0128/article/details/78512715
到此這篇關(guān)于numpy的squeeze函數(shù)使用方法的文章就介紹到這了,更多相關(guān)numpy squeeze內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- 詳解Numpy擴(kuò)充矩陣維度(np.expand_dims, np.newaxis)和刪除維度(np.squeeze)的方法