numpy.repeat(a, repeats, axis=None):若axis=None,對于多維數(shù)組而言,可以將多維數(shù)組變化為一維數(shù)組,然后再根據(jù)repeats參數(shù)擴充數(shù)組元素;若axis=M,表示數(shù)組在軸M上擴充數(shù)組元素。
In [1]: import numpy as np In [2]: arr = np.arange(12).reshape(1,4,3) In [3]: arr Out[3]: array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]])
①repeats為整數(shù)N,axis=None:數(shù)組arr首先被扁平化,然后將數(shù)組arr中的各個元素 依次重復(fù)N次
In [4]: arr.repeat(2) Out[4]: array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11])
②repeats為整數(shù)數(shù)組rp_arr,axis=None:數(shù)組arr首先被扁平化,然后再將數(shù)組arr中元素依次重復(fù)對應(yīng)rp_arr數(shù)組中元素對應(yīng)次數(shù)。若rp_arr為一個值的一維數(shù)組,則數(shù)組arr中各個元素重復(fù)相同次數(shù),否則rp_arr數(shù)組長度必須和數(shù)組arr的長度相等,否則報錯
a:rp_arr為單值一維數(shù)組,進行廣播
In [5]: arr.repeat([2]) Out[5]: array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11])
b:rp_arr長度小于數(shù)組arr長度,無法進行廣播,報錯
In [6]: arr.repeat([2,3,4])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ipython-input-6-d3b52907284c> in module>()
----> 1 arr.repeat([2,3,4])
ValueError: operands could not be broadcast together with shape (12,) (3,)
c:rp_arr長度和數(shù)組arr長度相等
In [7]: arr.repeat(np.arange(12)) Out[7]: array([ 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11])
d:rp_arr長度大于數(shù)組arr長度,也無法廣播,報錯
In [8]: arr.repeat(np.arange(13))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ipython-input-8-ec8454224d1b> in module>()
----> 1 arr.repeat(np.arange(13))
ValueError: operands could not be broadcast together with shape (12,) (13,)
結(jié)論:兩個數(shù)組滿足廣播的條件是兩個數(shù)組的后緣維度(即從末尾開始算起的維度)的軸長度相等或其中一方的長度為1
③repeats為整數(shù)N,axis=M:數(shù)組arr的軸M上的每個元素重復(fù)N次,M=-1代表最后一條軸
In [9]: arr.repeat(2,axis=0) Out[9]: array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]], [[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]]) In [12]: arr.repeat(2,axis=-1)#arr.repeat(2,axis=-1)等同于arr.repeat(2,axis=2) Out[12]: array([[[ 0, 0, 1, 1, 2, 2], [ 3, 3, 4, 4, 5, 5], [ 6, 6, 7, 7, 8, 8], [ 9, 9, 10, 10, 11, 11]]])
④repeats為整數(shù)數(shù)組rp_arr,axis=M:把數(shù)組arr1軸M上的元素依次重復(fù)對應(yīng)rp_arr數(shù)組中元素對應(yīng)次數(shù)。若rp_arr為一個值的一維數(shù)組,則數(shù)組arr1軸M上的各個元素重復(fù)相同次數(shù),否則rp_arr數(shù)組長度必須和數(shù)組arr1軸M的長度相等,否則報錯
a:rp_arr長度和數(shù)組arr1軸M上長度相等
在軸0上擴充數(shù)組元素
In [13]: arr1 = np.arange(24).reshape(4,2,3) In [14]: arr1 Out[14]: array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]) In [15]: arr1.repeat((1,2,3,4),axis=0) Out[15]: array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]], [[ 6, 7, 8], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[12, 13, 14], [15, 16, 17]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]], [[18, 19, 20], [21, 22, 23]], [[18, 19, 20], [21, 22, 23]], [[18, 19, 20], [21, 22, 23]]])
在軸1上擴充數(shù)組元素
In [19]: arr1.repeat([1,2],axis=1) Out[19]: array([[[ 0, 1, 2], [ 3, 4, 5], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17], [15, 16, 17]], [[18, 19, 20], [21, 22, 23], [21, 22, 23]]])
b:rp_arr為單值數(shù)組時,進行廣播
In [20]: arr1.repeat([2],axis=0) Out[20]: array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]], [[ 6, 7, 8], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]], [[18, 19, 20], [21, 22, 23]]])
c:rp_arr和數(shù)組arr1某軸不滿足廣播條件,則報錯
In [21]: arr1.repeat((1,2,3),axis=0)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ipython-input-21-8ae4dc97e410> in module>()
----> 1 arr1.repeat((1,2,3),axis=0)
ValueError: operands could not be broadcast together with shape (4,) (3,)
numpy.tile(A, reps):根據(jù)reps中元素擴充數(shù)組A中對應(yīng)軸上的元素
①reps為整數(shù)N:可以把整數(shù)N理解成含一個元素N的序列reps,若數(shù)組.ndim大于reps序列的長度,則需在reps序列的索引為0的位置開始添加元素1,直到reps的長度和數(shù)組的維度數(shù)相等,然后數(shù)組各軸上的元素依次重復(fù)reps序列中元素對應(yīng)的次數(shù)
對于一維數(shù)組而言:是整體數(shù)組重復(fù)N次,從數(shù)組的最后一位置開始重復(fù),注意與repeat函數(shù)的區(qū)別
In [26]: arr3 = np.arange(4) In [27]: arr3 Out[27]: array([0, 1, 2, 3]) In [28]: np.tile(arr3,2) Out[28]: array([0, 1, 2, 3, 0, 1, 2, 3])
對多維數(shù)組而言:arr2.ndim=3,,reps=[2,],可以看出數(shù)組的長度大于序列reps的長度,因此需要向reps中添加元素,變成reps=[1,1,2],然后arr2數(shù)組再根據(jù)reps中的元素重復(fù)其對應(yīng)軸上的元素,reps=[1,1,2]代表數(shù)組arr2在軸0上各個元素重復(fù)1次,在軸1上的各個元素重復(fù)1次,在軸1上的各個元素重復(fù)2次
In [29]: arr2 = np.arange(24).reshape(4,2,3) In [30]: arr2 Out[30]: array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]) In [31]: np.tile(arr2,2) Out[31]: array([[[ 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5]], [[ 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11]], [[12, 13, 14, 12, 13, 14], [15, 16, 17, 15, 16, 17]], [[18, 19, 20, 18, 19, 20], [21, 22, 23, 21, 22, 23]]])
②reps為整數(shù)序列rp_arr:若數(shù)組.ndim大于rp_arr長度,方法同①相同,若數(shù)組ndim小于rp_arr長度,則需在數(shù)組的首緣維添加新軸,直到數(shù)組的維度數(shù)和rp_arr長度相等,然后數(shù)組各軸上的元素依次重復(fù)reps序列中元素對應(yīng)的次數(shù)
a:數(shù)組維度大于rp_arr長度:需rp_arr提升為(1,2,3)
In [33]: arr2 = np.arange(24).reshape(4,2,3) In [34]: arr2 Out[34]: array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]) In [35]: np.tile(arr2,(2,3)) Out[35]: array([[[ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5], [ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5]], [[ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11], [ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11]], [[12, 13, 14, 12, 13, 14, 12, 13, 14], [15, 16, 17, 15, 16, 17, 15, 16, 17], [12, 13, 14, 12, 13, 14, 12, 13, 14], [15, 16, 17, 15, 16, 17, 15, 16, 17]], [[18, 19, 20, 18, 19, 20, 18, 19, 20], [21, 22, 23, 21, 22, 23, 21, 22, 23], [18, 19, 20, 18, 19, 20, 18, 19, 20], [21, 22, 23, 21, 22, 23, 21, 22, 23]]])
b:數(shù)組的維度小于rp_arr的長度:需在數(shù)組的首緣維度新增加一條軸,使其shape變?yōu)?1,4,2,3)
In [36]: np.tile(arr2,(2,1,1,3)) Out[36]: array([[[[ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5]], [[ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11]], [[12, 13, 14, 12, 13, 14, 12, 13, 14], [15, 16, 17, 15, 16, 17, 15, 16, 17]], [[18, 19, 20, 18, 19, 20, 18, 19, 20], [21, 22, 23, 21, 22, 23, 21, 22, 23]]], [[[ 0, 1, 2, 0, 1, 2, 0, 1, 2], [ 3, 4, 5, 3, 4, 5, 3, 4, 5]], [[ 6, 7, 8, 6, 7, 8, 6, 7, 8], [ 9, 10, 11, 9, 10, 11, 9, 10, 11]], [[12, 13, 14, 12, 13, 14, 12, 13, 14], [15, 16, 17, 15, 16, 17, 15, 16, 17]], [[18, 19, 20, 18, 19, 20, 18, 19, 20], [21, 22, 23, 21, 22, 23, 21, 22, 23]]]])
repeat和tile都可以用來復(fù)制數(shù)組的,但是有一些區(qū)別
關(guān)鍵區(qū)別在于repeat是對于元素的復(fù)制,tile是以整個數(shù)組為單位的 ,repeat復(fù)制時元素依次復(fù)制,注意不要用錯,區(qū)別類似于[1,1,2,2]和[1,2,1,2]
用法
np.repeat(a, repeats, axis=None)
重復(fù)復(fù)制數(shù)組a的元素,元素的定義與axis有關(guān),axis不指定時,數(shù)組會被展開進行復(fù)制,每個元素就是一個值,指定axis時,就是aixis指定維度上的一個元素
a = np.array([[1,2], [3,4]])
不指定axis,默認None,這時候數(shù)組會被展開成1維,再進行復(fù)制
np.repeat(a, 2) # 所有元素依次復(fù)制相同的次數(shù)
參數(shù)是列表
np.repeat(a, [1, 2, 1, 2]) # 如果第二個參數(shù)是列表,列表長度必須和a的復(fù)制可選元素數(shù)目相等,這里都是4
指定時,就是指定了復(fù)制元素沿的維度,這時候就不會把數(shù)組展平,會維持原來的維度數(shù)
np.repeat(a, 2, axi=0) # 所有沿著0維的元素依次復(fù)制相同的次數(shù)
np.repeat(a, [1, 2], axis=1) # 第二個參數(shù)是列表,列表長度必須和a的復(fù)制可選元素數(shù)目相等,這里是2
結(jié)果如下,復(fù)制元素從第1維度算,可以看到第一列被復(fù)制了一次,第二列被復(fù)制了兩次
用法
np.tile(a, repeats)
復(fù)制數(shù)組,repeats可以是整數(shù)或者元組、數(shù)組
示例如下,它會將數(shù)組復(fù)制兩份,并且在最后一維將兩個元素疊加在一起,數(shù)組的維數(shù)不變,最后一維根據(jù)復(fù)制次數(shù)加倍
如果列表長度是1,和整數(shù)時相同。
列表長度不為1時,列表從后向前看,最后一項是2,所以復(fù)制兩個數(shù)組,在最后一維進行疊加,倒數(shù)第二項是3,將前步的結(jié)果進行復(fù)制,并在倒數(shù)第二維,結(jié)果如下
當列表的長度超過數(shù)組的維數(shù)時,和前面類似,從后向前復(fù)制,復(fù)制結(jié)果會增加維度與列表的維數(shù)匹配,結(jié)果如下,在上面的基礎(chǔ)上,增加了一維
復(fù)制結(jié)果的shape
但是對于 簡單的單個數(shù)組重復(fù),個人更喜歡使用stack和concatenate將同一個數(shù)組堆疊起來
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。