主頁(yè) > 知識(shí)庫(kù) > 一篇文章帶你順利通過(guò)Python OpenCV入門階段

一篇文章帶你順利通過(guò)Python OpenCV入門階段

熱門標(biāo)簽:B52系統(tǒng)電梯外呼顯示E7 高德地圖標(biāo)注收入咋樣 地圖標(biāo)注多個(gè) 企業(yè)微信地圖標(biāo)注 怎么辦理400客服電話 鶴壁手機(jī)自動(dòng)外呼系統(tǒng)違法嗎 萊蕪電信外呼系統(tǒng) 沈陽(yáng)防封電銷電話卡 銀川電話機(jī)器人電話

1. OpenCV 初識(shí)與安裝

本部分要了解 OpenCV (Open Source Computer Vision Library)的相關(guān)簡(jiǎn)介,OpenCv 可以運(yùn)行在多平臺(tái)之上,輕量級(jí)而且高效,由一系列 C 函數(shù)和少量 C++類構(gòu)成,提供了 Python、Ruby、MATLAB 等語(yǔ)言的接口,所以在學(xué)習(xí)的時(shí)候,要注意查閱資料的語(yǔ)言實(shí)現(xiàn)相關(guān)問(wèn)題。

這個(gè)階段除了安裝 OpenCV 相關(guān)庫(kù)以外,建議收藏官方網(wǎng)址,官方手冊(cè),官方入門教程,這些都是最佳的學(xué)習(xí)資料。

模塊安裝完畢,需要重點(diǎn)測(cè)試 OpenCV 是否安裝成功,可通過(guò) Python 查詢安裝版本。

2. OpenCV 模塊簡(jiǎn)介

先從全局上掌握 OpenCV 都由哪些模塊組成。例如下面這些模塊,你需要找到下述模塊的應(yīng)用場(chǎng)景與簡(jiǎn)介。

core、imgprochighguicalib3d、features2d、contribflann、gpulegacy、mlobjdetect、photo、stitching

整理每個(gè)模塊的核心功能,并完成第一個(gè) OpenCV 案例,讀取顯示圖片。

3. OpenCV 圖像讀取,顯示,保存

安裝 OpenCV 之后,從圖像獲取開(kāi)始進(jìn)行學(xué)習(xí),包含本地加載圖片,相機(jī)獲取圖片,視頻獲取,創(chuàng)建圖像等內(nèi)容。

只有先獲取圖像之后,才能對(duì)圖像進(jìn)行操作處理,信息提取,結(jié)果輸出,圖像顯示,圖像保存。

對(duì)于一個(gè)圖像而言,在 OpenCV 中進(jìn)行讀取展示的步驟如下,你可以將其代碼進(jìn)行對(duì)應(yīng)。

1.圖像讀??;

2.窗口創(chuàng)建;

3.圖像顯示;

4.圖像保存;

5.資源釋放。

涉及需要學(xué)習(xí)的函數(shù)有 cv2.imread()cv2.namedWindow()、cv2.imshow()、cv2.imwrite()、cv2.destroyWindow()、cv2.destroyAllWindows()、 cv2.imshow()、cv2.cvtColor()cv2.imwrite()、cv2.waitKey()。

4. 攝像頭和視頻讀取,保存

第一個(gè)要重點(diǎn)學(xué)習(xí) VideoCapture 類,該類常用的方法有:

  • open() 函數(shù);
  • isOpened() 函數(shù);
  • release() 函數(shù);
  • grab() 函數(shù);
  • retrieve() 函數(shù);
  • get() 函數(shù);
  • set() 函數(shù);

除了讀取視頻外,還需要掌握 Opencv 提供的 VideoWriter 類,用于保存視頻文件。

學(xué)習(xí)完相關(guān)知識(shí)之后,可以進(jìn)行這樣一個(gè)實(shí)驗(yàn),將一個(gè)視頻逐幀保存為圖片。

5. OpenCV 常用數(shù)據(jù)結(jié)構(gòu)和顏色空間

這部分要掌握的類有 Point 類、Rect 類、Size 類、Scalar 類,除此之外,在 Python 中用 numpy 對(duì)圖像進(jìn)行操作,所以 numpy 相關(guān)的知識(shí)點(diǎn),建議提前學(xué)習(xí),效果更佳。

OpenCV 中常用的顏色空間有 BGR 顏色空間、HSV/HLS 顏色空間、Lab 顏色空間,這些都需要了解,優(yōu)先掌握 BGR 顏色空間。

6. OpenCV 常用繪圖函數(shù)

掌握如下函數(shù)的用法,即可熟練的在 Opencv 中繪制圖形。

  • cv2.line();
  • cv2.circle();
  • cv2.rectangle();
  • cv2.ellipse();
  • cv2.fillPoly();
  • cv2.polylines();
  • cv2.putText()。

7. OpenCV 界面事件操作之鼠標(biāo)與滑動(dòng)條

第一個(gè)要掌握的函數(shù)是鼠標(biāo)操作消息回調(diào)函數(shù),cv2.setMouseCallback() ,滑動(dòng)條涉及兩個(gè)函數(shù),分別是:cv2.createTrackbar()cv2.getTrackbarPos()。

掌握上述內(nèi)容之后,可以實(shí)現(xiàn)兩個(gè)案例,其一為鼠標(biāo)在一張圖片上拖動(dòng)框選區(qū)域進(jìn)行截圖,其二是通過(guò)滑動(dòng)條讓視頻倍速播放。

8. 圖像像素、通道分離與合并

了解圖像像素矩陣,熟悉圖片的像素構(gòu)成,可以訪問(wèn)指定像素的像素值,并對(duì)其進(jìn)行修改。

通道分離函數(shù) cv2.split(),通道合并函數(shù) cv2.merge()。

9. 圖像邏輯運(yùn)算

掌握?qǐng)D像之間的計(jì)算,涉及函數(shù)如下:

cv2.add();cv2.addWeighted();cv2.subtract();cv2.absdiff();cv2.bitwise_and();cv2.bitwise_not();cv2.bitwise_xor()。

還可以研究圖像乘除法。

10. 圖像 ROI 與 mask 掩膜

本部分屬于 OpenCV 中的重點(diǎn)知識(shí),第一個(gè)為感興趣區(qū)域 ROI,第二個(gè)是 mask 掩膜(掩碼)操作 。

學(xué)習(xí) ROI 部分時(shí),還可以學(xué)習(xí)一下圖像的深淺拷貝。

11. 圖像幾何變換

圖像幾何變換依舊是對(duì)基礎(chǔ)函數(shù)的學(xué)習(xí)與理解,涉及內(nèi)容如下:

  • 圖像縮放 cv2.resize();
  • 圖像平移 cv2.warpAffine();
  • 圖像旋轉(zhuǎn) cv2.getRotationMatrix2D();
  • 圖像轉(zhuǎn)置 cv2.transpose();
  • 圖像鏡像 cv2.flip();
  • 圖像重映射 cv2.remap()。

12. 圖像濾波

理解什么是濾波,高頻與低頻濾波,圖像濾波函數(shù)。

線性濾波:方框?yàn)V波、均值濾波、高斯濾波,
非線性濾波:中值濾波、雙邊濾波,

  • 方框?yàn)V波 cv2.boxFilter();
  • 均值濾波 cv2.blur();
  • 高斯濾波 cv2.GaussianBlur();
  • 中值濾波 cv2.medianBlur();
  • 雙邊濾波 cv2.bilateralFilter()。

13. 圖像固定閾值與自適應(yīng)閾值

圖像閾值化是圖像處理的重要基礎(chǔ)部分,應(yīng)用很廣泛,可以根據(jù)灰度差異來(lái)分割圖像不同部分,閾值化處理的圖像一般為單通道圖像(灰度圖),核心要掌握的兩個(gè)函數(shù):

  • 固定閾值:cv2.threshold();
  • 自適應(yīng)閾值:cv2.adaptiveThreshold()。

14. 圖像膨脹腐蝕

膨脹、腐蝕屬于形態(tài)學(xué)的操作,是圖像基于形狀的一系列圖像處理操作。
膨脹腐蝕是基于高亮部分(白色)操作的,膨脹是対高亮部分進(jìn)行膨脹,類似“領(lǐng)域擴(kuò)張”, 腐蝕是高亮部分被腐蝕,類似“領(lǐng)域被蠶食”。

膨脹腐蝕的應(yīng)用和功能:

  • 消除噪聲;
  • 分割獨(dú)立元素或連接相鄰元素;
  • 尋找圖像中的明顯極大值、極小值區(qū)域;
  • 求圖像的梯度;

核心需要掌握的函數(shù)如下:

  • 膨脹 cv2.dilate();
  • 腐蝕 cv2.erode()。

形態(tài)學(xué)其他操作,開(kāi)運(yùn)算、閉運(yùn)算、頂帽、黑帽形態(tài)學(xué)梯度 這些都是基于膨脹腐蝕基礎(chǔ)之上,利用 cv2.morphologyEx() 函數(shù)進(jìn)行操作。

15. 邊緣檢測(cè)

邊緣檢測(cè)可以提取圖像重要輪廓信息,減少圖像內(nèi)容,可用于分割圖像、特征提取等操作。

邊緣檢測(cè)的一般步驟:

  • 濾波: 濾出噪聲対?rùn)z測(cè)邊緣的影響 ;
  • 增強(qiáng): 可以將像素鄰域強(qiáng)度變化凸顯出來(lái)—梯度算子 ;
  • 檢測(cè): 閾值方法確定邊緣 ;

常用邊緣檢測(cè)算子:

  • Canny 算子,Canny 邊緣檢測(cè)函數(shù) cv2.Canny();
  • Sobel 算子,Sobel 邊緣檢測(cè)函數(shù) cv2.Sobel();
  • Scharr 算子,Scharr 邊緣檢測(cè)函數(shù) cv2.Scahrr() ;
  • Laplacian 算子,Laplacian 邊緣檢測(cè)函數(shù) cv2.Laplacian()。

16. 霍夫變換

霍夫變換(Hough Transform)是圖像處理中的一種特征提取技術(shù),該過(guò)程在一個(gè)參數(shù)空間中,通過(guò)計(jì)算累計(jì)結(jié)果的局部最大值,得到一個(gè)符合該特定形狀的集合,作為霍夫變換的結(jié)果。

本部分要學(xué)習(xí)的函數(shù):

  • 標(biāo)準(zhǔn)霍夫變換、多尺度霍夫變換 cv2.HoughLines() ;
  • 累計(jì)概率霍夫變換 cv2.HoughLinesP() ;
  • 霍夫圓變換 cv2.HoughCricles() 。

17. 圖像直方圖計(jì)算及繪制

先掌握直方圖相關(guān)概念,在掌握核心函數(shù),最后通過(guò) matplotlib 模塊對(duì)直方圖進(jìn)行繪制。計(jì)算直方圖用到的函數(shù)是 cv2.calcHist()

直方圖相關(guān)應(yīng)用:

  • 直方圖均衡化 cv2.equalizeHist();
  • 直方圖對(duì)比 cv2.compareHist();
  • 反向投影 cv2.calcBackProject()。

18. 模板匹配

模板匹配是在一幅圖像中尋找與另一幅模板圖像最匹配(相似)部分的技術(shù)。

核心用到的函數(shù)如下:

  • 模板匹配 cv2.matchTemplate();
  • 矩陣歸一化 cv2.normalize();
  • 尋找最值 cv2.minMaxLoc()。

19. 輪廓查找與繪制

核心要理解到在 OpenCV 中,查找輪廓就像在黑色背景中找白色物體。

常用函數(shù):

  • 查找輪廓 cv2.findContours();
  • 繪制輪廓 cv2.drawContours() 。

最后應(yīng)該掌握針對(duì)每個(gè)輪廓進(jìn)行操作。

20. 輪廓特征屬性及應(yīng)用

這部分內(nèi)容比較重要,并且知識(shí)點(diǎn)比較多,核心內(nèi)容與函數(shù)分別如下:

  • 尋找凸包 cv2.convexHull() 與 凸性檢測(cè) cv2.isContourConvex();
  • 輪廓外接矩形 cv2.boundingRect();
  • 輪廓最小外接矩形 cv2.minAreaRect();
  • 輪廓最小外接圓 cv2.minEnclosingCircle();
  • 輪廓橢圓擬合 cv2.fitEllipse();
  • 逼近多邊形曲線 cv2.approxPolyDP();
  • 計(jì)算輪廓面積 cv2.contourArea();
  • 計(jì)算輪廓長(zhǎng)度 cv2.arcLength();
  • 計(jì)算點(diǎn)與輪廓的距離及位置關(guān)系 cv2.pointPolygonTest();
  • 形狀匹配 cv2.matchShapes()。

21. 高級(jí)部分-分水嶺算法及圖像修補(bǔ)

掌握分水嶺算法的原理,掌握核心函數(shù) cv2.watershed() 。

可以擴(kuò)展補(bǔ)充圖像修補(bǔ)技術(shù)及相關(guān)函數(shù) cv2.inpaint(),學(xué)習(xí)完畢可以嘗試人像祛斑應(yīng)用。

22. GrabCut FloodFill 圖像分割、角點(diǎn)檢測(cè)

這部分內(nèi)容都需要一些圖像專業(yè)背景知識(shí),先掌握相關(guān)概念知識(shí),在重點(diǎn)學(xué)習(xí)相關(guān)函數(shù)。

  • GrabCut 算法 cv2.grabCut();
  • 漫水填充算法 cv2.floodFill();
  • Harris 角點(diǎn)檢測(cè) cv2.cornerHarris();
  • Shi-Tomasi 角點(diǎn)檢測(cè) cv2.goodFeaturesToTrack();
  • 亞像素角點(diǎn)檢測(cè) cv2.cornerSubPix()。

23. 特征檢測(cè)與匹配

特征點(diǎn)的檢測(cè)和匹配是計(jì)算機(jī)視覺(jué)中非常重要的技術(shù)之一, 在物體識(shí)別、視覺(jué)跟蹤、三維重建等領(lǐng)域都有很廣泛的應(yīng)用。

OpenCV 提供了如下特征檢測(cè)方法:

  • “FAST” FastFeatureDetector;
  • “STAR” StarFeatureDetector;
  • “SIFT” SIFT(nonfree module) Opencv3 移除,需調(diào)用 xfeature2d 庫(kù);
  • “SURF” SURF(nonfree module) Opencv3 移除,需調(diào)用 xfeature2d 庫(kù);
  • “ORB” ORB Opencv3 移除,需調(diào)用 xfeature2d 庫(kù);
  • “MSER” MSER;
  • “GFTT” GoodFeaturesToTrackDetector;
  • “HARRIS” (配合 Harris detector);
  • “Dense” DenseFeatureDetector;
  • “SimpleBlob” SimpleBlobDetector。

24. OpenCV 應(yīng)用部分之運(yùn)動(dòng)物體跟蹤與人臉識(shí)別

了解何為運(yùn)動(dòng)物體檢測(cè),OpenCV 中常用的運(yùn)動(dòng)物體檢測(cè)方法有背景減法、幀差法光流法,跟蹤算法常用的有 meanShift, camShift粒子濾波, 光流法 等。

  • meanShift 跟蹤算法 cv2.meanShift();
  • CamShift 跟蹤算法 cv2.CamShift()。

如果學(xué)習(xí)人臉識(shí)別,涉及的知識(shí)點(diǎn)為:

  • 人臉檢測(cè):從圖像中找出人臉位置并標(biāo)識(shí);
  • 人臉識(shí)別:從定位到的人臉區(qū)域區(qū)分出人的姓名或其它信息;
  • 機(jī)器學(xué)習(xí)。

以上就是一篇文章帶你順利通過(guò)Python OpenCV入門階段的詳細(xì)內(nèi)容,更多關(guān)于Python OpenCV的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!

您可能感興趣的文章:
  • 如何基于OpenCV&Python實(shí)現(xiàn)霍夫變換圓形檢測(cè)
  • Python OpenCV實(shí)現(xiàn)邊緣檢測(cè)
  • Python OpenCV實(shí)現(xiàn)視頻追蹤
  • Python OpenCV 針對(duì)圖像細(xì)節(jié)的不同操作技巧
  • opencv python簡(jiǎn)易文檔之圖像處理算法
  • opencv python簡(jiǎn)易文檔之圖片基本操作指南

標(biāo)簽:銀川 湘西 安慶 呼倫貝爾 三亞 呼倫貝爾 烏魯木齊 葫蘆島

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《一篇文章帶你順利通過(guò)Python OpenCV入門階段》,本文關(guān)鍵詞  一篇,文章,帶你,順利,通過(guò),;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《一篇文章帶你順利通過(guò)Python OpenCV入門階段》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于一篇文章帶你順利通過(guò)Python OpenCV入門階段的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章